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The purpose of this paper is to present a rather comprehensive classification of 
incompressible quantum Hall states in the limit of large distance scales and low 
frequencies. In this limit, the description of low-energy excitations above the 
groundstate of an incompressible quantum Hall fluid is intimately connected to 
the theory of integral quadratic forms on certain lattices which we call quantum 
Hall lattices. This connection is understood with the help of the representation 
theory of algebras of gapless, chiral edge currents or, alternatively, from the 
point of view of the bulk effective Chern-Simons theory. Our main results 
concern the classification of quantum Hall lattices in terms of certain invariants 
and their enumeration in low dimensions and for a limited range of values of 
those invariants. Among physical consequences of our analysis we find explicit, 
discrete sets of plateau values of the Hall conductivity, as well as the quantum 
numbers of quasiparticles in fluids corresponding to any one among those quan- 
tum Hall lattices. Furthermore, we are able to predict transitions between struc- 
turally different quantum Hall fluids corresponding to the same filling factor. 
Our general results are illustrated by explicitly considering the following plateau 
values: a H = N/(2N + 1 ), N = 1, 2, 3,..., an = 5/13, 8/5, 5/3, 1, and ~r n = 1/2. 

KEY W O R D S :  Quantum Hall effect; Kac-Moody algebras; Abelian Chern- 
Simons theory; integral lattices; quadratic forms. 

1. INTRODUCTION 

T h e  q u a n t u m  H a l l  ef fect  ( Q H E )  is o b s e r v e d  in e l e c t r o n  g a s e s  c o n f i n e d  to  

a p l a n a r  r e g i o n  12 a n d  s u b j e c t  t o  a s t r o n g ,  u n i f o r m  m a g n e t i c  f ield 

W ~ 1 7 6  ' t r a n s v e r s a l  to  (2 (i.e., w i t h  B ~ I # 0 ) .  S u c h  s y s t e m s  

Institut fiir Theoretishe Physik, ETH-H6nggerberg, CH-8093, Zurich, Switzerland. E-mail: 
JUERG@ITP.ETHZ.CH THIRAN@ITP.ETHZ.CH. 

209 

0022-4715/94/0700-0209107.00/0 ~ 1994 Plenum Publishing Corporation 



210 FrShlich and Thiran 

of electrons (and/or holes) are realized, experimentally, as inversion 
layers which are formed at the interface between a semiconductor and an 
insulator, e.g., in a MOSFET or in a heterostructure, such as one made of 
GaAs/A1,.Ga~_,.As, when an electric field (gate voltage) is applied in the 
direction perpendicular to the interface. The quantum mechanical motion 
of the electrons in the direction perpendicular to the interface is then 
quantized--the electrons (or holes) are bound to the interface by a deep 
potential well. At very low temperatures, the gas of electrons (or holes) is 
therefore a very nearly two-dimensional system. 

The domain s to which the electrons are confined is chosen to be a 
bounded subset of the (x, y) plane, typically a disk. When the magnetic 
field B ~~ has been turned on, one tunes the total electric current in the 
y direction to a value I.,. and then measures the difference in the chemical 
potentials of the electrons (or holes) at the two edges of s transversal to 
the x direction, i.e., the voltage drop Vx in the x direction. The Hall 
resistance is defined as the ratio 

V.,. (1.I) R . -  (,, 

Similarly, one can measure the longitudinal resistance 

V v 
Rt. - I~. ( 1.2} 

where V,, denotes the voltage drop in the y direction. 
The surprising experimental discoveries made at the beginning of the 

1980s by yon Klitzing etal. (~) and Tsui etal. (2) can be summarized as 
follows: Let n denote the density of electrons (minus the density of holes), 
e the elementary electric charge, h Planck's constant, and c the velocity of 
light. One defines the filling factor v, a dimensionless quantity, as 

n 
v = (1.3) 

Bt~ I /( hc/e ) 

where hc/e is the quantum of magnetic flux. If the electrons were free, 
spinless fermions v would be the fraction of filled Landau levels. At very 
low temperatures, T ~ 0 ,  the resistances RH and RL are functions of v with 
the following remarkable properties: 

(i) The dimensionless quantity 

h 
aM = - -  R~ 1 (1.4) 

e 2 
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where R~  1 is the Hall conductivity, is constant  on certain intervals, i.e., 
has plateaux, and the values of aN on all observed plateaux are rational 
numbers. The most  pronounced  plateaux have integer heights (integer Q H E )  
which can be measured with extraordinary precision (one part  in 108). 
They serve as new standards for the definition of e. Most  plateaux have 
values an=nn/dn,  where nn and dn are relatively prime integers, and 
dn is odd (odd denomina tor  rulet3~), but a plateau at a l l =  5/2 has been 
observed, too, 14~ and in double-layer systems a plateau has been observed 
at a n =  1/2.15~ 

(ii) Whenever  (v, trn) belongs to a plateau, RL very nearly vanishes. 
Thus when a n  has a plateau value the system is free of dissipative processes, 
and conversely. It is then called an "incompressible quantum Hall (QH) 
.fluid." 

(iii) The precision of plateau heights (but not their widths) is insen- 
sitive to sample prepara t ion  and geometry.  

There is convincing evidence ~6'7'9~ that  when aH is on a plateau of 
noninteger height the system exhibits fractionally charged excitations, the 
fractional charges being related to the denomina tor  dM in the value nH/d n 
of a n. Moreover ,  when the in-plane componen t  Bll ~ of the magnetic field 
is varied, keeping v fixed, it is found that  certain plateaux disappear  to 
reemerge, in some cases, at other values of Blb~ 2 This strongly suggests that 
Zeeman energies, and thus electron spin, play an impor tant  role in a Q H  
fluid at certain values of a n, such as a/~ = 2/3, 4/3, 8/5, 5/2, etc. 

For  illustration, a table of observed plateau values for 0 < a n  ~< 1 is 
given in Table I. More  details about  observed plateaux and their special 
properties will be discussed in Section 7. 

A variety of a t tempts  at a theoretical explanation of these truly 
remarkable  features of two-dimensional  electron gases have been made,  for 
both the integer Q H E  and the fractional QHE.  3 In both cases, ideas due 
to Laughlin have been seminal. 4 

In this paper,  we further develop a line of thought  initiated in 
refs. 18-22. In order to make this paper  accessible to readers not familiar 
with the literature on the F Q H E ,  we shall recall some of the key ideas 
proposed in the papers quoted above. The novel feature of  this paper  is 
that, starting from basic physical principles, it relates the observed plateau 
values of  a n to the theory of integral quadratic forms on integral lattices 

2 See experimental results for tilted magnetic field transition at tr n = 8/5 and 5/3, ~s~ an = 4 / 3 ,  ~9~ 

a ,  = 2/3, ~l~ and a n = 5/2.141 See also ref. 11. 
-~ For reviews of the quantum Hall effect and comprehensive compilations of references see, 

e.g., refs. 12-15. 
See ref. 16 for IQH, ref. 17 for FQH; see also refs. 32 and 33. 
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d~ 

Table I. Observed Plateau Values for  O<oH=nH/dH~I 

O" H 

1 
3 
5 
7 
9 

11 
13 
15 

I _2 
3 3 

5 5 5 
I ~ 4 

9 

II 11 11 
3 4 6 ~  

t~ 13 
& 
t5 

13 

1 

5 

which the reader may have encountered in Lie group theory or number 
theory. 123n4~ The logic of this relationship will involve a study of the 
algebras of chiral edge currents in QH fluids and their representation 
theory. In order to give the reader a rudimentary idea of what is involved, 
we shall summarize a few elementary facts about integral quadratic forms 
and describe some basic results. 

Let V be an N-dimensional, real vector space with an inner product 
(., .). A basis {ej ..... eN} of V is said to be integral iff its Gram matrix is 
integral, i.e., 

KIj:= (e/,es)~7/ forall  L J  (1.5) 

Clearly KSj = KjI,  so K =  (Ku)  is a regular, symmetric N • N matrix with 
integer matrix elements. We define a lattice F by setting 

F : =  q =  ~ qle l :q l~7/  f o r a l l I  (1.6) 
I = 1  

Let {~ ..... ~N} be a basis of V dual to the basis {el ..... eu}, i.e., satisfying 
(~,  eg) = 65, I, J = 1 ..... N. Here 

d = ~  (K-  I)1" ej 

The basis {e',..., ~'J generates the dual lattice 

I ) F * : =  n =  ~ n l ~ l : n l s 7 / f o r a l l I  (1.7) 
1 = 1  

Since eg--Z~=~ K j y ,  with KueT/,  we can view the lattice F as a sub- 
lattice of its dual F*,  F ~  F*; and F is called self-dual if F =  F*. 
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A vector v e  V can be identified with a column vector ~ =  (v' ..... vU) T, 
called a charge vector, with v~=(v ,~ / ) ,  and with a row vector 
v = (v~ ..... VN), called aflux vector, with v~= (v, et), I =  1 ..... N. Note  that, in 
the product  ( . , . )  on V, 

and 

( q , q ' ) = ~ r . K ~ ' = ~  qtKuq 'J for q , q ' ~ F  (1.8) 
l ,J  

(n, n ' ) = n K - l n ' r = ~  nt(K-l)tSn'j 
l ,J  

By Kramer ' s  rule, 

(x-,) ,J  = L R -  
A 

for n, n ' ~  F*  (1.9) 

(1.10) 

where A = d e t  KeZ,  and K = ( R u ) ,  with Ru=Rs~71 ,  is the cofactor 
matrix. Thus the matrix elements (K-i)  u are rational numbers.  

The set of vectors in F*  modulo  vectors in F, F*/F, is an Abelian 
group, and it is easy to see that  its order is given by 

Ir*/FI =A (1.I1) 

The lattice F is called even iff all scalar products  (q, q ')  are even integers, 
i.e., iff K ,  ~ 271, for all I = 1 ..... N. Otherwise F is called odd. 

We call F Euclidean iff the inner product  (., �9 ) is positive-definite, i.e., 
iff K is positive-definite. 

Linear t ransformat ions  of V mapping  the lattice F onto itself form a 
group, denoted by GL(N, 7/), which is defined by 

GL(N,Z):= {S=(SH):SH~Z,  VI, J, de tS= _+1} (1.12) 

It contains the subgroup,  O(F) ,  of all those invertible t ransformations 
which preserve the length of each lattice vector, i.e., 

O(F) :=  {S~GL(N, 7/): SrKS= K} (1.13) 

If S60(F) ,  then S - I  c O ( F ) ,  and hence 

S K - I S r = K  -t (1.14) 

i.e., O(F)= O(F*). Two integral quadrat ic  forms, K~ and K_,, are equiv- 
alent iff there is some matrix S~ GL(N, Z) such that 

Kz = SrKIS (1.15) 
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The primary purpose of this paper is to derive the following basic 
connection between incompressible (RL=0)  QH fluids and equivalence 
classes of integral quadratic forms on lattices. 

Bas ic  Resul t .  An incompressible QH fluid is characterized by a 
pair of integral, odd Euclidean lattices Fe and F h and two linear forms Q~ 
and Qn on these lattices, i.e., vectors Q~ = ((Qx)l ..... (Q.~)Nx) in F,* with 

Q.~(q) = (Q.,., q) = Q.~ �9 ~ Vq~Fx 

satisfying the following two constraints: 

(i) Q.,_ is a "visible" vector in F.*, i.e., 

g.c.d.((Qx)l ..... (Ox)u,) = 1 

where g.c.d, denotes the greatest common divisor. 

(ii) Qx is an "odd" functional o n / ~ ,  i.e., 

Qx(q) = (q, q)x mod2  (1.16) 

[meaning that the parity of Qx(q) is the same as that of (q, q)x] for 
x=e,  h. 

The Hall conductivity aH is given by 

aH=tr~--ah (1.17) 

where 
Nx 

a x = ( Q ~ , Q ~ ) = Q . . K - ~ Q r = ~  (Q.~),(KT~)IJ(Q.~)j (1.18) 
LJ 

Clearly a~ and ah, and hence crn, are rational numbers. Distinct 
vectors Qx belonging to the same orbit denoted [Qx],  under the 
orthogonal group of the lattice O(Fx), specify the same geometrical data. 
In all examples that we will have to deal with orbits have just two +Q x  
or four elements. By (1.10), 

=LE KxIQ,)  ax / t  (Qx)l - ~  

~/stt3 ~ and denominator, ,J~, are where numerator, y .~=Z (Qx)1 .~ .~ /g ,  
integers. Let lx be their greatest common divisor, which we call the level 
of Fx: 

lx = g.c.d.(L~, Ax) 
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Then 

with 

n x 
a~ =--~ g.c.d. (nx, dx)= 1 

" d X  

1 ~ u  
n~ = - -  ~ (O.,.), .~ (O.0J 

(1.19) 
1 

d.,. = ~ A.~ 

x = e, h. It turns out that when dx is even, then l., must be even, too, in fact 
a multiple of 4, and the QH fluid will exhibit Laughlin vortices of electric 
charge +e/2dx, where e is the elementary electric charge (see Theorem 6, 
Section 5). 

Let us pause to explain some features of this result. The subscripts e 
and h stand for "electrons" and "holes," respectively. They indicate the 
nature of the basic charge carriers of the fluid. Fluids for which F e # ~ and 
Fh ~ ~ are composite fluids containing both electrons and holes as basic 
charge carriers. The nature of the basic charge carriers can be inferred from 
the chirality (left or right) of the edge currents in the sample, given the 
direction of the external magnetic field. The chirality of edge currents is 
apparently experimentally measurable. ~51~ 

Given the Basic Result described above, the task arises to classify 
incompressible QH fluids by classifying pairs of odd, integral, Euclidean 
lattices together with orbits of visible odd vectors in the dual lattices. 
Clearly, the classification problems for x = e and h are identical, so that we 
may focus, e.g., on the classification of (Fe, Q~) and henceforth drop the 
subscript e. We define a quantity Lmax by setting 

Lmax:= min( max (qM, qM)) (1.20) 
I,M ~= 1,....~ 

where the minimum is taken over all possible bases {qt ..... qN} of F with 
the property that Q ( q j ) =  1 for all J = 1 ..... N (such bases exist!). Physically, 
L~x  has the following interpretation: If a state of the QH fluid is prepared 
which describes two electrons excited above the ground state of the system, 
one may consider the minimum of the modulus of their relative angular 
momentum in that state. For  a proper choice of the quantum numbers of 
the state that minimum is at least Lm~x. From the physics of Coulomb 
systems it is plausible that L,~a~ satisfies an absolute upper bound, e.g., 

L~,~ ==_9 (1.21) 

(in units where h = 1 ). 



216 Fr6hlich and Thiran 

The dimension N of the lattice F is the number of &dependent U(1)- 
edge currents of fixed chiralitY exhibited by the QH fluid. The discriminant 
`4 of the Gram matrix of a basis of F is related to the number of distinct 
fractionally charged Laughlin vortices of the fluid. It is plausible that for 
samples with a positive density of impurities the possible values of N and 
,4 are bounded by finite, positive numbers (which depend on the density of 
impurities). 

The quantities N, A, and Lma~ are invariants. Thus the problem is to 
classify equivalence classes of odd, integral, Euclidean lattices F and O(F) 
orbits [ Q]  of visible vectors Q ~ F *  satisfying condition (1.16) with the 
property that the values of the invariants N, A, and L,,~x are bounded. 
Pairs of such data (for x = e, h) then classify incompressible QH fluids and 
determine the possible values of the Hall conductivity aH via Eqs. (1.17) 
and (1.18). 

This classification problem is a very difficult, but finite problem in the 
"geometry of natural numbers." 

We shall see that the structure of the lattices Fe, Fh and of the orbits 
[Qe] and [Qh] will determine much more than the value of all. It will 
determine quantum numbers of quasiparticle excitations of the type of 
Laughlin vortices, certain properties of the spin wave functions of electrons 
or holes, and possible transitions as the values of components of the 
magnetic field or of the electron density are varied for a fixed value of the 
filling factor. 

The reader may wonder why odd, integral, Euclidean lattices appear 
in the analysis of incompressible QH fluids. We shall see that such lattices 
describe the structure of all physically realizable representations of level 
k = 1 Kac-Moody algebras of chiral edge currents describing the boundary 
degrees of freedom of an incompressible QH fluid. The existence of such 
algebras of chiral edge currents can be derived from the electrodynamics of 
incompressible QH fluids by invoking a mechanism of gauge anomaly can- 
cellation.~ls21 

In Section 2, we recall the basic facts concerning the electrodynamics 
of incompressible QH fluids and some features of their quantum mechanics 
(see refs. 19-21 for more details). 

In Section 3, we show that the edge degrees of freedom of an incom- 
pressible QH fluid, which are related to the chiral boundary currents first 
described by Halperin, ~z6~ are described by a quantum theory of chiral 
currents that exhibits an Abelian gauge anomaly exactly canceled by an 
Abelian gauge anomaly of the bulk degrees of freedom. This mechanism of 
gauge anomaly cancellation leads to a concept of boundary-bulk duality 
which is made precise by describing the theory of conserved bulk currents, 
in the limiting regime of large distance scales and low frequencies (scaling 
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limit), in terms of an Abelian Chern-Simons gauge theory. The analysis of 
the space of physical states of the Chern-Simons theory, combined with 
natural assumptions on the spectrum of integrally charged quasiparticles of 
an incompressible QH fluid and their statistics, then leads to a proof of the 
"Basic Result" described above. 

In Section 4, we present additional details concerning boundary-bulk 
duality and rederive the "Basic Result" by studying the algebras of chiral 
edge currents describing the boundary degrees of freedom of an incom- 
pressible QH fluid and their representation theory. We identify the physical 
states of the Chern-Simons theory describing the bulk currents with so- 
called conformal blocks of the algebras of chiral edge currents and derive 
some consequences for QH fluids on surfaces without boundary (of interest 
in the analysis of numerical experiments). 

In Section 5, we begin with the main task set for this paper, the 
classification of integral, odd Euclidean lattices F and visible vectors 
Q e F *  describing the physics in the scaling limit of incompressible QH 
fluids. A pair (F, Q) of an integral, odd Euclidean lattice F and a visible 
vector Q e F*  is called a QHlattice. We discuss some basic invariants of 
QH lattices and their physical meaning, arithmetic congruences between 
these invariants, and implications for the physical properties of incom- 
pressible QH fluids. Our analysis is organized in 12 short paragraphs, and 
the main results are summarized in seven theorems. Taking the "Basic 
Result" described above for granted, the material in Sections 5 and 6 can 
be read without being familiar with Sections 2~,. We say this to encourage 
theoreticians and experimentalists who are not familiar with current 
algebra and Chern-Simons gauge theory to proceed directly to Section 5, 
where they will find results which they may or should find relevant. 

In Section 6, we present a constructive approach to finding QH lat- 
tices and deriving the value of the Hall conductivity a ,  and the spectrum 
of quasiparticles (Laughlin vortices) and their quantum numbers. Our 
methods are fairly effective in constructing the QH lattices corresponding 
to "elementary" QH fluids with an  < 2 which generalize the QH fluids with 
an = 1, 1/3, 1/5 ..... For a large class of such fluids, we present an ,4DE-C9 
classification, where A, D, and E refer to the Lie algebras su(n), so(2n +4),  
n = 2, 3 ..... E6, and ET, respectively, and O stands for one- or two-dimen- 
sional, integral, odd Euclidean lattices which have been classified by Gauss. 

These results enable us to associate QH lattices with all observed 
plateau values of an  and predict properties of the corresponding QH fluids, 
including phase transitions. 

Section 7 summarizes our results on the construction of QH lattices in 
the form of explicit tables. 

822/76/I-2-16 
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2. THE ELECTRODYNAMICS OF INCOMPRESSIBLE 
QH FLUIDS 

We consider a two-dimensional gas of electrons (or holes) in a 
uniform, external magnetic field B(~ tn ~~ Rto)~ with B~ ), the compo- 
nent of B (~ perpendicular to the plane of the system, nonzero. In linear 
response theory, the connection between the electric field E =  (Ex, E,,) in 
the plane of the system and the electric current density i~ is given by the 
Ohm-Hall law 

where 

E=p ic  (2.1) 

(Px. -Pn)  (2.2) 
/9 = \ P H  P r'y 

is the resistivity tensor. In two dimensions, 

pH=RH 

and, for a rectangular sample with edges of length lx and ly, P,x = RL(lv/lx) 
and pyy = Rc(I,/I.,,). In particular, 

R L = 0 r Pxx  = P.vy = 0 (2.3) 

in which case the conductivity tensor p-x has the form 

p-'  =( O Ltt ~ with aH=p~'=R ~' (2.4) 
\ U , ]  --0" H 

in units where e2/h = 1. 
When RL = 0, Eq. (2.1) thus takes the form 

tc - -  a H s k / E /  (Hall law) (2.5) 

where zk is the kth component of the vector z =  (zx, z.,,)---(z~, zz), and 

~= (~kt)= ( _ ~  10) 

The conservation of electric charge is expressed, as usual, in the form 
of the continuity equation for charge and current density, i.e., 

0 
~ p c + V ' i c = 0  (2.6) 
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_ " : r  where Pc is the electric charge density, and i~-( t~,  i[) (with i~ =0,  as there 
is no current flowing in the direction perpendicular to the plane of the 
system). 

Faraday's induction law for E = (Ex, Ey) and B~ ', the total z compo- 
nent of the magnetic field, is the equation 

1 OBt~ t 
- - - + V  ^ E = 0  (2.7) 
c at 

Assuming temporarily that the spins of the electrons in the sample are 
frozen in the direction parallel or antiparallel to that of B (~ we may ignore 
electron spin and treat the electrons as spinless fermions whose classical 
and quantum dynamics is insensitive to Bll and E• In this situation, 
Eqs. (2.5)-(2.7) summarize the main features of the electrodynamics of QH 
fluids in the limit of large distance scales and small frequencies. 

Combining Eqs. (2.5)-(2.7), one easily finds that 

0 10B~ t 
-~ p c = ,r . - . (2.8) 

c at 

We define i ~  as c times the difference between the charge 
density Pc and the uniform background density en of the system. By B we 
denote the difference between the actual z component of the magnetic field 
B~ t and the z component B~ ) of the uniform background magnetic field 
B I~ Then Eq. (2.8) can be integrated in t to yield 

i ~ = a.B (2.9) 

Faraday's induction law implies that the electromagnetic field (E, B) can be 
derived from a vector potential A = (Ao, A), A ='(A x, Ay): 

10A 
E= - V A o + ~  

B = V ^ A  
(2.1o) 

The vector potential A is determined by (E, B) up to gauge transformations 

10X 
Aa--*Ao+c- ~ ,  A~A+Vx 

where g is a scalar function. Setting ic = (io, ic), we can summarize the Hall 
law (2.5) and Eq. (2.9) in the equations 

t~-'u _ a,ve~,~ a, A~ (2.11 ) 
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or, using differential forms, 

ic = * an dA (2.12) 

where �9 denotes the Hodge *operation and d denotes exterior differentia- 
tion. Setting J =  *ic, i.e., J~,.=eu,.~i ~ we find that (2.12) becomes 

J= - a n d A  (2.13) 

This equation can be derived from the action functional 

S(A)=~-~ A ^ dA 1 

a, , f  ~,.~. i f  = - -  ~ AuOvA~ Aui~'d3x+B.T. (2.14) 

by setting the variation of S(A) with respect to A to z e r o .  119) In (2.14), the 
integrations extend over the three-dimensional space-time, the cylinder 
A = g2 x R, of the system, and B.T. stands for "boundary terms," i.e., terms 
only depending on the vector potential A restricted to the boundary, 
3S2 x ~, of the space-time of the system. 

Treating electrons as noninteracting, classical particles of charge - e ,  
one easily finds (by equating the electrostatic and the Lorentz force) that 

c e n  e 2 
an  . . . .  v (2.15) 

B• h 

This equation is not far from what is actually observed in very pure sam- 
pies, where the widths of the plateaux of on are tiny, as long as v is not 
too big. The important point is that when RL is measured to vanish in some 
interval I of filling factors then a n remains constant over that interval, with 
a value that is some rational multiple of eZ/h. The classical law is followed 
only insofar as an  = (e2/h)nn/dH for all v in L where nn/d u is a rational 
number in the interval L Steps toward a theoretical understanding of this 
remarkable "quantization" of the values of an  under the condition that RL 
vanishes have been described in refs. 12-22 and references given there. 
Some of these steps will be recalled briefly below. But the main objective 
of this paper is to provide an understanding of which rational multiples of 
e2/h correspond to plateau values of an, and, given a plateau value of an,  
to predict the spectrum of quasiparticles found in the system and to deter- 
mine their electric charge, their statistics, and their spin. In trying to reach 
this objective we shall encounter the theory of integral quadratic forms on 
lattices. ~2s'-'4~ But before we can understand how this happens, we must 
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combine the electrodynamics of QH systems, as summarized in Eqs. (2.11) 
and (2.14), with quantum mechanics. In the remainder of this paper we shall 
employ units such that e = h = 1 (unless mentioned otherwise). 

There are different approaches toward quantizing a two-dimensional 
system of electrons coupled to an external vector potential A = (Ao, A). 
One is to work with Feynman path integrals. In this approach one intro- 
duces a Grasssmann algebra with generators q,s(x), qC(x)*, where s = _+1/2 
denotes the z component of the electron spin and x = (x, t) is a space-time 
point belonging to A =/2  x R. The action functional SA(~O*, ~b; A) is taken 
to be the usual action functional of nonrelativistic many-body theory where 
the fields ~b and ~b* are coupled to A in the way familiar from the Pauli 
equation. All this is explained in much detail, e.g., in refs. 19-21; see also 
ref. 25. 

Let A t~ denote the vector potential of the uniform background elec- 
tromagnetic field Ell~ = 0, B~ ~, and let A be the vector potential of a small 
perturbing electromagnetic field E, B, as in Eq. (2.10). [We set the com- 
ponents E j_ and Bll to zero and work in a three-dimensional space-time, as 
before; see Eqs. (2.5)-(2.14). 5 If E• and Bii do not vanish, one must inter- 
pret them as components of an SU(2) gauge field coupling to the spin 
current, as explained in ref. 21. We shall not repeat these matters here.] 
A quantity of considerable interest is the partition function 

Za(A ) = N A(A + A I~ io~) (2.16) 

where 

NA(A) = I ~ k *  ~ '  exp[ iS , (~*,  ~k; A)] (2.17) 

As long as space /2 is bounded and the density of electrons in f2 is finite, 
the path integral (2.17) is just a slick notation for an object that has a 
perfectly precise mathematical status for a large class of physically realistic 
model systems, including those considered in this paper (assuming that A 
is, e.g., uniformly bounded and smooth). 

The important facts about the partition function ZA(A) are the follow- 
ing ones: 

1. As long as xiv~xj, for iv~j (noncoinciding arguments) 

6" 
" (2rci)" In Za(A) 

6A~,(xl) ...6A~,.(x,) 

= ( T[im(x, ). . .  H"(x,,)] )[4 (2.18) 

5 Spin-orbit interactions are neglected; but see ref. 21. 
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where the right side denotes the connected, time-ordered Green function of 
n quantum mechanical current density operators iU'(xi ) ..... iU"(x,) in a two- 
dimensional system of electrons coupled to an external vector potential 
A + A  ~~ [Thus In ZA(A)  is the generating functional of the connected 
current Green functions.] In particular, defining the electric current density 
iU~(x) at a space-time point x (as measured experimentally) as the expecta- 
tion value of the quantum mechanical current density iU(x), we have that 

The functional 

6 
iu~(x) = ( iu(x)  )A = 27ri - -  In Z~(A ) (2.19) 

6A,,(x) 

S~rr(A) = i in ZA(A) (2.20) 

is customarily called the effective action of the system. Then Eq. (2.19) 
reads 

6 
iU~(x) = 21r 6~u(x)  Se~(A ) (2.21) 

The second important fact about the partition function is its gauge 
invariance. 

2. We have 

ZA(A + dZ) = ZA(A) 

o r  

SS"(A + d Z ) =  S~(A) (2.22) 

for an arbitrary function g on A. Equation (2.22) summarizes the Ward 
identities for a gas of electrons. It expresses the fact that all physical quan- 
tities of such a system are invariant under gauge transformations of 
A: A ~ A + d g [i.e., Ao -~ Ao + (l/c) OX/Ot, A ~ A + Vg]. In other words, a 
system of nonrelativistic charged particles in a bounded region of space and 
at a finite density does not exhibit any gauge anomalies. 

Next, we compare Eq. (2.21) to Eq. (2.11)---the Hall law--to find that 
Eq. (2.21) implies (2.11) if and only if 

--uO,,A).+ W(AIoA) 

A A dA + W(A IoA) (2.23) 
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where W(AIoA) stands for the boundary terms B.T. in Eq. (2_14), which will 
be discussed in the next section. 

One should ask whether the form of S~rr(A) given in (2.23) can be 
derived from the microscopic quantum mechanical dynamical laws of a 
two-dimensional electron gas under the condition that the longitudinal 
resistance RL vanishes, and what an appropriate quantum mechanical 
reformulation of the equation RL = 0 is. This question has been studied in 
ref. 21, where it has been proposed that the vanishing of RL be interpreted 
as certain cluster decay properties of the connected current Green func- 
tions. Then one is able to show that the term (an/4n) SA A ^ dA, the 
so-called Chern-Simons term, is the leading contribution to the effective 
action S~rC(A) in the regime of large distance scales and low frequencies. 
Moreover, it is the only contribution to the bulk effective action which 
violates gauge invariance, in the form of Eq. (2.22). This violation of gauge 
invariance essentially determines the boundary term W(A I~,~) which must 
cancel it exactly. 

Thus, the hard analytical problem arising in the theory of the quan- 
tum Hall effect is to prove a certain kind of cluster decay properties of the 
connected current Green functions for certain values of the filling factor v. 
Although this problem been studied analytically and numerically in much 
detail (see refs. 12 and 15 and references given there), it has not found a 
mathematically rigorous solution so far--not  even for systems where the 
interactions between electrons can be ignored, but with disorder, which 
exhibit an integer QHE. 

In this paper, we study an easier and yet quite nontrivial problem: 
Assuming that the analytical problem just described can be solved, i.e., 
that it is justified to use the effective action given in (2.23) in a description 
of the system in the limit of large distance scales and low frequencies 
- - in  accordance with the phenomenology of the QH effect, Eqs. (2.13), 
(2.14)--what can we say about the possible values of the coefficient an;  
can we understand why it is quantized? To this question we find some sur- 
prising answers, which, incidentally, also shed some light on the analytical 
problem described above. 

Our analysis is analogous to a group-theoretic analysis of symmetries 
of a quantum mechanical system, leaving the question open how one can 
solve its Schrrdinger equation---except that in our problem we encounter 
Kac-Moody algebras of chiral currents, rather than ordinary groups and 
finite-dimensional, Lie algebras. It is explained in the next section how 
Kac-Moody algebras arise in the study of quantum Hall systems. For 
details see refs. 26 and 18-22. 
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3. ANOMALY CANCELLATION AND U(1 )-CURRENT ALGEBRA 

In this section, we shall first determine the form of the all-important 
boundary term W(A IoA) in the effective action s~fr(A) given in Eq. (2.23). 
It turns out that this form is essentially determined by the gauge invariance 
(2.22) of the effective action. Let X(x) be a gauge function not vanishing at 
the boundary OA = 0s x R of the space-time region to which the electron 
gas is confined. Then 

s~fr(A+dx)=-4-~ (A+dz)^dA+W((A+dx)IeA) 

+ W((A + dX)I~A) - W(A I~.,) 

where we have used that d2= 0, along with Stokes' theorem. Thus 

(3.1) 

W((A + dz)I~A)-- W(A I~ ~ faA dx A A (3.2) 

This equation determines the general form of W, up to gauge-invariant 
terms. To see this, let us assume, for simplicity, that the system is confined 
to a region s of the (x, y) plane with the topology of a disk. Let L denote 
the length of the circumference of dO. It is convenient to parametrize 0s 
by an angle 8 e [0, 2rt) and to introduce light-cone coordinates u_+ on OA: 

where v is some velocity. Interpreting the gauge field A 10.~ as a one-form 
ct, we have that 

~(u)=~ +(u) du + + c~_(u) du (3.4) 

In light-cone coordinates the right side of (3.2) can be written as 

~'J'0 A [~x+(u)O_g(u)-c t_(u)a+g(u)]  d2u (3.5)  

With this, the general solution of Eq. (3.2) is found to be 

W(~)  = ~re W d ~ )  - cry, WR(~)  + G(~)  (3.6) 
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where G(ct) is a gauge-invariant functional of ~, 

WL/R(Ot)=IfaA[Ct+(U)~_(U)--2Ct.T.(U ) --~- Ct ~ (U)] ~ d2u 

and 

(3.7) 

trn = a,, - ah (3.8) 

In (3.7), O+ = a/au• and [] = 2d+a_ is the two-dimensional d'Alembertian 
in light-cone coordinates. For further details see, e.g., ref. 21. 

The problem we are now confronted with is to find out what 
Eqs. (3.6)-(3.8) tell us about the dynamics of boundary charge density 
waves in two-dimensional systems of electrons and holes in a transversal 
magnetic field, The answer is known from current algebra: WL/R(~t ) is the 
generating functional of the connected Green functions of left-moving/ 
right-moving chiral U(1) currents localized on OA. These currents describe 
charged boundary density waves of the two-dimensional electron and hole 
gas. The study of charged excitations in the two-dimensional electron gas 
is closely related to the study of the representation theory of left- and right 
moving U(1)-current algebras. We have prejudices from physicsconcerning 
the charged low-energy excitations in an incompressible QH fluid, and 
these prejudices select a class of representations of the U(1)-current 
algebras which can be realized in such a fluid. Knowledge of this class of 
representations will imply knowledge of the possible values of an. 

The theory of chiral current algebras is perfectly symmetric under 
exchanging left-movers (L) with right-movers (R). We shall focus on left- 
movers, drop the subscript L and set u := u+ and tr := ae. Let J(u) be a 
left-moving current on OA. By (3.6) and (3.7), we have that the connected 
two-point current Green function in the ground state (vacuum), i.e., the 
second derivative of W(ct) with respect to ct , is given by 

1 ( 
4r~2 (J(u)J(u'))c='~2 k~Z u--u' +k (3.9) 

All other connected Green functions vanish (at ~=0) .  We conclude that 
the commutator between two currents is given by 

[J(u), J(u ' )]  = ia6'(u- u') (3.10) 

From these facts.it follows that J is a derivative of a massless, chiral free 
field. The most general solution has the form 

N 

J(u)=(Q, Od~(u))=Q.a~(u)= ~ QtO(kt(u) (3.11) 
l = l  
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where 

and 

Q = ( Q ,  ..... Qu) (3.12) 

-~(u) = (~J(u) ..... ~ ( u ) )  r (3.13) 

is an N-tuple of massless, chiral free fields, for some N =  1, 2, 3 ..... The 
commutation relations of the fields ~(u),  I =  1,..., N, have the form 

[0~(u), 0~S(u')] = i(C-~) tJ 6 ' ( u -  u') (3.14) 

for some positive-definite matrix C =  (CH). This matrix defines a scalar 
product ( . , . )  on the space R N of vectors ~ and Q. Combining Eqs. (3.10), 
(3.11), and (3.14), we find the relation 

N 

a=(Q,  Q ) = Q . C - ~ Q T =  ~ Q,(C-~)IJ Q.~ (3.15) 
l . J = [  

By choosing appropriate coordinates in field space R :v we can always 
transform C into the identity matrix. 

The currents 

J/(u) := 0qt'(u), I =  1,..., N (3.16) 

generate a Kac-Moody algebra isomorphic to an N-fold tensor product of 

coupled chiral u(1 )-current algebras. 
In a QH fluid with negligible electron--electron interactions, every 

filled Landau level gives rise to a separate u(1 )-current algebra at level 1 
describing the edge currents first studied by Halperint26~; see also ref. 21. 
The system is free of dissipative processes, with RL = 0, precisely when the 
density of electrons is chosen such that the extended states of an integer 
number N of Landau levels are completely filled with electrons in the 
ground state of the system. In that case there are N independent u(l)- 
current algebras of edge currents. Choosing the sign of B~ ~ appropriately, 
these u(l)-current algebras are generated by left-moving currents for 
Landau levels filled with electrons, and right-moving currents for Landau 
levels filled with holes. 

For N Landau levels filled with electrons, the vector Q is given by 
Q = (1 ..... 1 ), the total electric edge current operator J is given by 

N 

J (u)=  ~ d~t(u) (3.17) 
I = 1  
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and the matrix C is given by 

so that 

C IJ ~ r IJ 

a = N  (3.18) 

Formulas (3.9)-(3.16) generalize what one knows from the integral quan- 
tum Hall effect t26} to general QH fluids of interacting electrons, t2~ 

The theory of chiral U(1) currents described by formulas (3.9)-(3.16) 
has a Lagrangian description in terms of functional integrals. In this form, 
they can be coupled to external U(1)-vector potentials. The resulting 
theory exhibits a gauge anomaly given in terms of the actions W L and W R 
of Eq. (3.7). Since the theories of left- and right-movers are isomorphic, we 
shall focus on left-movers and omit the corresponding subscripts. 

Let ~ = (c~ ..... ~N) be an N-tuple of U(I ) gauge fields on the "cylinder" 
0A = 0f2 • R. We consider an action functional 

4~ e,~ 

-Zf0A2,  a'-u 
+-~1 IOA "~- (u) 'C-~r  + (3.19) 

where u : =  (u+ ,u_ )  and C=(CH)  is a positive-definite N x N  matrix. 
Since the nonchiral fields q9 ..... q~u are coupled to external U(1) gauge fields 
a~ ..... "u,  the constraint that says that the physical degrees of freedom are 
described by left-moving components cannot be formulated by 

O_~(u)=0 (3.20) 

[i.e., ~(u) independent of u_] ,  since (3.20) is not gauge-invariant. The 
correct gauge-invariant generalization of (3.20) is the equation 

0_~(u) - C - '~T  (u) = 0 (3.21) 

For, under U(1) gauge transformations, the fields ~ transform like angles, 

g(u) ~-~ ~(u) := g(u) + C-'Zr(u) (3.22) 

while 
~(u) ~ X~(u) := ~(u) + ~ ( u )  (3.23) 
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as usual, where X = (g~ ..... gu) is an N-tuple of scalar functions. Thus (3.21) 
is gauge-invariant. 

Now, one checks by quadratic completion that 

Jlr-' I ~exp[ilaA(~,~)]6(O ~-C-'~r_) 

- 2 ~  (u) -C - l - + ~ r ( u )  dZu (3.24) 

where ~ is a (divergent) normalization constant. The r.h.s, of (3.24) 
exhibits a U(1) gauge anomaly canceled by that of a Chern-Simons action 
on A which depends on an N-tuple d of U(I) vector potentials coupled 
through the matrix C-1. 

Next we set 

a ( u ) : =  Qa(u) with a := Ala,t (3.25) 

where A is an external electromagnetic vector potential, and Q is an 
N-tuple of electric charges. Furthermore, we set 

a : =  Q . C - ' Q  r (3 .26)  

Comparing Eqs. (3.22) and (3.7), we find that 

jl/'-' I ~exp[-ilaA(qt, Q~)] 6(O_~-C-'Qr~_ ) 

= exp iaW,(~) (3.27) 

The r.h.s, of (3.27) exhibits a U(1) anomaly which is canceled by the U(1) 
anomaly of 

exp i~--~ A ^ dA (3.28) 

Except for relative minus signs, the formulas for right-movers (L---, R) are 
identical. For a suitable choice of the direction of the uniform external 
magnetic field W ~ left-moving edge currents are observed if the basic 
charge carriers are electrons, and right-moving ones are observed if the 
charge carriers are holes. Reversing the direction of B I~ exchanges left with 
right. 
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These findings are quite important. We know from ref. 21 that the 
Chern-Simons term 

itrH i r A A dA 
4~ JA 

is the only anomalous bulk term in the effective action S~rr(A) of an incom- 
pressible QH fluid. Apparently, we learn from this that the degrees of 
freedom located near the boundary of such a fluid are described by N left- 
moving U(1) currents with electric charges (Q,.~ ..... QeN) and coupled 
through a positive-definite matrix C~, and by M right-moving U(1) 
currents with electric charges (Qh~ ..... QhM) and coupled through a positive- 
definite matrix Ch for certain as yet undetermined positive integers N 
and M. By (3.26)-(3.28), we have that 

~n = a,. - aj, (3.29) 

with 

tre= _Q," - C,, ' Q,. r , _  a,,=Qh_ �9 CJ? l Q hr 

The dynamics of the left-moving currents is described by a (_1 + 1)-dimen- 
sional anomalous Lagrangian field theory with action I,,A(~b,~) given by 
(3.19) [-a similar field theory (L ~ R) describes the right-movers]. 

So far, the only constraints on the still undetermined quantities N, M, 
Q,., Qh, C,., and C~, are the ones described in Eq. (3.29). From the physics 
~f incompressible QH fluids we shall derive further constraints on these 
quantities. Again, the arguments for left- and right-overs are similar, and 
we focus our attention on left-movers and drop subscripts. 

The gauge-invariant U(l)-current operators 

J~(u)  := O+(~l(U)--(C-Ict r I - +) (u), I =  1 ..... N (3.30) 

permit us to define N U(1)-charge operators: Let s=(I /x/~)( ,~  + - u  ), 
t = ( 1 / x / ~ v ) ( u + + u  ); see (3.3). A gauge-invariant expression for the 
U(1 )-charge operators .~= (.~ ..... .~U)r at time t is given by 

1 
~ , : = ~ e o J o ( S , t ) d s = - ~ o o ( : _ - j + ) ( s , t ) d s  (3,31) 

In a Feynman path integral like the one appearing in Eq. (3.24), the fields 
~(s, t) can be chosen to be periodic in the space variable s with period L. 
We wish to consider a Feynman integral describing a transition of the 
boundary system from a state with U(1) charges ~ at time t~ to a state 
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with U(1) charges q2 at time t2. By Eq. (3.31), and since the integration 
variables ~ are periodic in s, such a transition occurs if the external U(1)- 
gauge fields ~ are chosen as follows: ~ = a §  du § +~_ du- = a o d t + ~  ds, 
and the spatial components a~ of a are constrained to have the circulations 

r al(s, tl) ds = -Ctf " C (3.32) 

If the boundary system consists of left-movers only, then we must impose 
the chiral constraint 

d _~(u) - C - ~Z r (u) = 0 (3.33) 

which, by periodicity of ~ in s, implies that ~_ can be gauged away. Then 
we have that 

1 1 
x//~- ~+' ~ o = ~ -  ~+ 

with 

~o~2~ + (s, tt) ds= x/~ ~t r.  C (3.34) 

for l =  1, 2. From (3.34), (3.33), (3.30), and (3.31) we finally obtain 

-~,, = ~]/ for l = 1 , 2  (3.35) 

Let us suppose that the gauge fields a are the restrictions of N U(1) 
gauge fields d =(A~ ..... AN) defined on the bulk space-time A = I 2 x R  of 
the QH fluid to the boundary OA. Then, by Stokes' theorem, 

~o z d s = f ,  dA=-n (3.36) 
t2 

where the Ith component n / of n is the total flux of the "magnetic field" 
Bz= dAz through space O, for I =  1 ..... N. By (3.32), n and the U(1) charges 

are related by the equation 

~=  C -  Inr (3.37) 

We shall call the vectors n "flux vectors," while the ~'s are called "charge 
vectors." 

The chiral theory described by the action (3.19) and the Feynman 
integral (3.24) can be equivalently described by a topological Chern-Simons 
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theory on a space-time A =f2 •  ~. This fact is called boundary-bulk 
duality, c2~1 To understand boundary-bulk duality, we introduce N U(1) 
gauge fields 

"b= (b ~ ..... bN) r (3.38) 

and N external vector potentials d =(A~ ..... A s )  and define the Chern- 
Simons action 

1 d b +  1 _ b +  B.T. (3.39) 

where B.T. stands for (g_.auge-dependent) boundary terms. We note that 
SA(b, A) is quadratic in b. It is therefore not hard to show--modulo some 
subtle ties related to gauge fixing 13~ 

f {exp[ - iS , ( -b ,  ,4)] } -@b[ g.r. 

= Jffexp--  -~n A ^ d A r -  WL(C;AIo  A 

where JV" is a normalization factor, and 

(3.40) 

1 
w,(c ;  ~) = Un I~A E.~ + (u). c -  'J_ (u) 

02 - 2 u _ ( u ) . C - '  v+ 0or (U) ] d2 u (3.41) 

and where "g.f." indicates some gauge fixing for the degrees of freedom 
located at OA. ~31'19"2~ Formally, Eq. (3.40) follows from (3.39) by quadratic 
completion. Thus the partition function of an incompressible QH fluid in 
the limit of large distance scales and low frequencies is obtained form a 
Chern-Simons theory for a certain number of Abelian gauge fields 
coupled to external vector potentials A = Q A ,  where A is an elec- 
tromagnetic vector potential. The Hall conductivity tr is given by 
, ,=Q.C-'Q T. 

The gauge fields /~ can be interpreted as the vector potentials o f  con- 
served currents 

i'= ,db  (3.42) 

with 

i : =  Q.r (3.43) 
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the total electric density operator, in a description of the QH fluid valid, 
asymptotically, on large distance scales and at low frequencies. This has 
been discussed in detail in refs. 19 and 20. 

The U(1)-charge operators associated with a current distribution f at 
time t are given by 

-~t = Ia fo(s t) dZx 

and the electric charge operator ~, is given by 

.~, = Q ..~, 

The quantum mechanical equations of motion obtained by varying the 
Chern-Simons action (3.39) with respect to b are given by 

d b = C - I d d  r or i-= C- i  , f i r  (3.44) 

where F =  d A. Integrating these equations over all of space I'2, we obtain 
that 

~, = C-Jn r (3.45) 
~ t  

where 

f 
n , = J ~  d A(s t) (3.46) 

is the flux vector at time t. 
Let us consider a state of the system with U(1) charges given by a 

charge vector ~, corresponding to a vector of eigenvalues of .~. Then (3.45) 
implies that 

~=  C - '  tj r (3.47) 

This equation coincides with (3.37), as one would expect. The electric 
charge of the state (assuming that the electric charge of the ground state is 
set to zero) is then given by 

qel = Q" t l= Q" C - ' n  r (3.48) 

In particular, if A = QA, where A is an external electromagnetic vector 
potential with magnet-fc flux m = Sa dA, then 

qel=am, a = Q . C - I Q  r (3.49) 
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Let us consider a state of an incompressible QH fluid describing k electrons 
and 1 holes excited from the ground state by coupling the QH fluid to 
suitable external vector potentials _4. Suppose this state is described by a 
charge ~. Then we clearly have that 

qcL=Q.Ct=l-k  

We set Al~ QA~O~, where A I~ is a fixed background electromagnetic vec- 
tor potential; s'ee Eqs. (2.16), (2.17). Then QA'~ AC~ and the vector 
potentials ,4 form an additive group. Heffce the flux vectors n and, by 
Eq. (3.47), the charge vectors ~ of physical states of an incompressible QH 
fluid form an additive group. We denote the group of charge vectors of 
physical states by Fphy s. This group contains a lattice, denoted by F, of 
V-vectors with integer electric charge, i.e., 

F =  { ~  Fphys: qc, = O" ~ 7/} (3.50) 

Now, the physics of incompressible QH fluids motivates us to require 
the following Basic Hypotheses: 

A1. An arbitrary localized cluster of quasiparticle excitations of an 
incompressible QH fluid of electric charge q ~ 7/ can be interpreted as a 
physical state of the system composed of l +  q holes and 1 electrons, for 
some ! = 0, 1, 2 ..... 

A2. Electrons and holes satisfy Fermi statistics. Thus, a cluster of 
quasiparticles of electric charge q ~ 7] is 

a fermion ifq is an odd integer'~ 
(3.51) 

a boson ifq is an even integerJ 
t" 

Wave functions of physical states of an incompressible QH fluid are single- 
valued in the positions of electrons or holes. 

Let us explore the consequences of hypotheses A I and A2. For this 
purpose, we consider histories of states of an incompressible QH fluid 
describing an excitation with charge vector ~ localized in a disk Dt and 
an excitation with charge vector q2 localized in a disk D2 disjoint from DI. 
We suppose that Dt and D2 sweep out space-time tubes Tt and T2, as 
depicted in Fig. 1 (0), (1), and (2). According to Eqs. (3.44) and (3.47), 
such histories are" described by coupling the gauge fields b to external vec- 
tor potentials A t'~, with 

supp d A ~'1 c T~'} u T~ ''1 

supp d A I ' ( t o ,  �9 ) ~_ D~'~u D~2 "1 

822/76/I-2-17 
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fO - 

D(w ~ 0(20 ) 

T~ O) T2 (0) 

(O) 

T, (I) Tz (I) TI (z) T(2 z) 

(i) (2)  

Fig. 1. Graphical representation of three possible histories (m=0, 1, or 2) of a state of an 
incompressible quantum Hall fluid describing two excitations localized in two disjoint disks 
D~ ") and D~ '') sweeping out space-time tubes T(~ ") and T~'L 

with 

and 

(dA(m))u=0 unless i = l , j = 2 ,  o r i = 2 ,  j = l  (3.52) 

o~,,~ d A (,,)r(:~, to) = C~,, ~ = 1, 2 (3.53) 

for m = 0 ,  1, 2, as follows from Eqs. (3.46), (3.47). We let 

I(") : =  I {exp[-iSA(-b'-A("')]  } ~blg.r. (3.54) 

be given by (3.40), with A ( ' )  as described above, for m = 0 ,  1, 2. We con- 
sider the two ratios I(~)/I -~) and I(2)/I (~ In-these ratios we can pass to the 
limit .(2 : •2, A /" R 3. Using the explicit expression on the r.h.s, of 
Eq.(3.40), we can then calculate the limiting ratios explicitly. For  
~l = c72 = ~, we find that 

1(1)/1(~ exp i(cp t + ~o2) exp ni(~ r.  C~) (3.55) 

where ~o~ is a phase only depending on 

A IT, s, 

for e = 1, 2; m = 0, 1. For  arbitrary ~ and c72, we find that 

I(2)/I(~ exp i(~Pl + ~2) exp 2ra(c7 r .  Cc72) (3.56) 
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where q~ is a phase only depending on 

for e = 1, 2; m = 0, 2. [For  suitable choices of 

_A j r~"), e =  1,2, m = 0 ,  1,2 

the phases q~l, q~2, ~kl, and ~b2 actually vanish.] 
The Aharonot~Bohm phases, exp rci(~ r. C~) and exp 2ni(~ r.C~2), 

describe the statistics of the quasiparticle excitations. Thus, if ~ = q2  = t], 

with q~ = Q. ~ = _ 1, the two excitations are holes or electrons and thus 
satisfy Fermi statistics. Hence, by Eq. (3.55), exp in(~- C~) = -1 ,  i.e., ~. C~ 
is an odd integer. More generally, by hypothesis A2, two excitations with 
charge vectors ql =q2=qeFphys  are identical bosons if q ~ = Q . ~  is an 
even integer and identical fermions if q~l = Q ' t t  is an odd integer. Thus, 
using Eq. (3.55), we conclude that if qr = Q .~ is an integer, then ~ r .  C~ is 
an integer, and the parity of Q. ~ equals the parity of ~r .  C~, i.e., 

Q.~==-~r.C~ mod2  (3.57) 

Among the quasiparticles appearing in an incompressible QH fluid there is 
a single electron and hole. Thus 

Q" ql = 1 for some vector ~ ~ F (3.58) 

We conclude that F is an integral lattice contained in ~N, the matrix C 
determines an integral quadratic form (- , . )  on F, and Q is a vector with 
components Q in the dual, F*, of F. By (3.40), (3.19), and (3.14), C is 
positive-definite and hence F is a Euclidean lattice. By (3.58) and (3.57), F 
contains a vector ~, such that 

Q - ~ l = l  andhence ~ r . c ~ l  isodd (3.59) 

Thus F is an odd, integral Euclidean lattice, and Q is a visible vector in the 
dual lattice F* (i.e., the open line segment from the origin of F* to Q does 
not contain any points of F*):  

g.c.d.(Ql ..... QN) = 1 

Next, let us consider a state describing a cluster of quasiparticles with 
charge vector qt ~ F localized in a disk D~ and a cluster of quasiparticles 
with an arbitrary charge vector q2 e/-'phys localized in a disk D2. If the 
cluster with charge vector t]~ makes a round trip around the cluster with 
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charge vector q2, as depicted in Fig. 1(2), then the state is multiplied by an 
Aharonov-Bohm phase factor 

exp 2nit] ( .  C~2 

[see (3.56)]. Since ~ ~ F, Q. ~ ~ 77, hence the cluster of quasiparticles with 
charge vector ~ corresponds to electrons and holes. Then hypothesis (A2) 
implies that 

exp 2ni~ r .  C~2 = 1 

i.e., 

It follows that 

~ r .  C~z ~ 7/ for all q~ ~/~ q2 ~ /~phys (3.60) 

f'phys C: F * (3.61) 

By (3.49), and since the quadratic form (., .) is integral on F and 
Q ~ F*, it follows that 

tr= (Q, Q ) =  Q.  C - I Q  r is a rational number (3.62) 

If an incompressible QH fluid is composed of two such fluids with the 
property that the basic charge carriers of one fluid are electrons while the 
basic charge carriers of the other are holes, then the entire story told so far 
must be repeated with (e, L, - , . . . )  replaced by (h, R, + , . . . ) .  We then 
conclude that such a fluid is characterized, asymptotically on large distance 
scales and at low frequencies, by two integral, odd Euclidean lattices F~ 
and Fj,, integral quadratic forms (., .)~ on Fe and (., �9 )h on Fh, and visible 
vectors Qe e F *  and Q~, ~ F*  such that 

an  = t r e -  trh (3.63) 

with 

ae = (Qe, Q~)~, ah = (Qh, Qh)h (3.64) 

It follows that an  is a rational number. 
Comparing these conclusions with Eqs. (1.12)-(1.15), we find that we 

have established a first part of the "Basic Result" announced in Section 1. 

4. A C R A S H  C O U R S E  ON THE R E P R E S E N T A T I O N  T H E O R Y  
A 

OF C H I R A L  u ( 1 ) - C U R R E N T  A L G E B R A S  

In this section, we reconsider the main results of Section 3 from the 
A 

point of view of the representation theory of chiral u(1 )-current algebras. 
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In Eqs. (3.14) and (3.16) we found that an incompressible QH fluid in 
a uniform background magnetic field B ~~ with electrons as basic charge 
carriers, exhibits chiral edge currents, 

J ' (u)  = dq~t(u), 1 = 1 ..... N (4.1) 

localized near the boundary 0g2 of the system. For an appropriate choice 
of the direction of B ~~ these currents are left-movers, and u =  
(1/w/'2)[vt + (L/2rt) ~9] is a light-cone coordinate on OA = 0f2 x 1~; see (3.3). 
The commutation relations of the currents j /are  given by 

[Jr(u), JL(u')] = i ( C - l )  n" 6'(u - u') (4.2) 

where C is a positive-definite N x N  matrix; see (3.14). By choosing a 
suitable basis in field space (~b 1 ..... ~b u) we can always achieve that C is the 
identity matrix. 

All unitary representations of these u(1)-current algebras can be con- 
structed with the help of vertex operators tz7"z8~ 

V L ( u ; n ) = : e x p i v / - 2 n . ~ ( u ) :  n ~ R  u (4.3) 

The vertex operators generate the operator (product) algebra 

Vz(u;n) V L ( u ' ; n ' ) , ~ u , ( u - u ' ) a " - a - a '  VL(u;n +n ' )  (4.4) 

where 
N 

A=�89189 ~ n t ( C - l ) t J n j  
I , J = l  

A' = �89 n') (4.5) 

d" = �89 n + n ' )  

While the currents Jr(u) are periodic o_perator-valued distributions of the 
light-cone variable u with period L/x /2  [see Eqs. (3.3), (3.9)1, the vertex 
operators VL(u;n) are in general not periodic in u, but should be viewed 
as operator-valued distributions on the covering space of the circle of 
circumference L, i.e., on the real line. By (4.2) and (4.3), they satisfy the 
quadratic Weyl algebra 

VL(u;n) VL(u ' ;n ' )=  {exp[+_rri0(~,n)]} VL(u';n') V,(u;n) (4.6) 

for u ~  u', where the phase 0(n,n)is  given by 

N 

0 ~ , n ' ) = ( n , n ' ) =  ~ n l ( C - l ) t J n j  (4.7) 
I . J =  I 
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The U(1)-charge operators .~ are given by 

.~ = (.~, .... .~u)r 

with 

1 ~ t = - - ~  Jl(u) du 

Equations (4.1)-(4.3) yield the commutation relations 

[-~, Vz_(u;n)] = q'Vt.(u;n) 

where 

(4.8) 

(4.9) 

N 

ql= ~ (C-I)IM nM (4.10) 
M = l  

Let {J~}k~ Z be the Fourier coefficients of Jl(u), i.e., 

J'(u)= ~ J~. exp(2rtik--~) (4.11) 

The vacuum state 10) of the u(1)-current algebras is characterized by the 
property that 

J ~ 1 0 ) = 0  for k = 0 , 1 , 2  .... (4.12) 

A dense set of states with vanishing U(1) charges is obtained by acting with 
polynomials in the operators J~, k <0,  on the vacuum 10). Let ~b be such 
a state. Then, formally, 

Vt.(u, n) qJ (4.13) 

is a state 6 with U(1) charges ff~), where q~=qt(n) is given by Eq. (4.10). 
This follows from (4.9) and the fact that ~.~b = 0. 

Every charge vector q of eigenvalues of -~ labels a distinct, unitary 
irreducible representation of the tensor product of N u( 1 )-current algebras. 
The representation space is spanned by the vectors (4.13), with ~ ) = ~ .  
Thus the vertex operators VL(u;n ) play the role of Clebsch~3ordan 
operators in the representation theory of u(1)-current algebra. 

Comparing Eqs. (4.9), (4.10), and (4.13) with Eqs.(3.24) and 
(3.31)-(3.35), we conclude that applying a vertex operator VL(u;n) to 

6 Smearing (4.13) in u with a test function, one obtains a well-defined normalizable state. 
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some state qJ at time 0 corresponds, in a Feynman path integral formalism, 
to coupling the integration variables ~ in the path integral (3.24) to exter- 
nal gauge fields ~ with the following properties: ~ is the restriction to the 
boundary of N U(l)-gauge fields _4 =(A~ ..... As) on A that describe a 
vortex tube in A carrying fluxes n and contained in the half-space at 
positive time which ends, at time 0, in a magnetic monopole with magnetic 
charges n located in the point (u, 0)~ OA. 

Repeating the discussion at the end of Section 3, after Eq. (3.49), we 
must ask which family of vertex operators VL(u;n) creates physical states 
of the algebras of chiral edge currents of an incompressible QH fluid when 
applied to states of charge 0. Clearly, we want these vertex operators to 
generate a closed operator algebra for the operator product specified in 
(4.4). Thus the charge vectors ~=  C-~n r [see Eq. (4.10)] labeling physical 
representations of the algebras of chiral edge currents form an additive 
group f'phy~' The electric charge of a state with U(1) charges t] is given by 

q~, = Q-~  (4.14) 

since, by Eq. (3.11), the electric edge current density J is given by 

J = Q . O : = Q . J  (4.15) 

See also eqs. (3.48), (4.9), and (4.10). The charge vectors ~ with integer 
electric charge qe~= Q-~  form a lattice F c  rphy s. Hypotheses A1 and A2 
of Section 3, after Ec~ (3.50), can be reformulated as follows: 

AI'. A vertex operator VL(u;n ) with q ~ = Q . ~ ( n ) = Q L C = ~ n r =  
q ~ Z creates a boundary excitation of the system composed o-I' l + q holes 
and I electrons, l = 0, 1, 2 ..... 

A2'. A vertex operator Vc(u;n) must satisfy 

Fermi statistics if q~l = Q" q(.q) is an odd integer 
- ( 4 . 1 6 )  

Bose statistics if q~l = Q 'q(~)  is even 

If q~t = Q" ~(n) is an integer and ~ '=  ~(n') belongs to Fphy s, then 

VL(u;n) Vz(u ' ;n ' )=  -T- Vz(u';n') Vz(u;n) (4.17) 

(independently of the sign of u - u'). 
Combining A2' with the Weyl relations (4.6), we conclude, in view of 

(4.17), that 

if Q. ~ is an odd integer, with ~ = C -  ~n r then 

d r- Ca = n .  C -  In r is an odd integer (4.18 ) 
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Furthermore, 

C-In  r then if Q. ~ is an even integer, with ~=  . , 

~r.  C~ =n.. C- in  r is an even integer (4.19) 

if Q- ~ is an integer and ~' e/'phys, then 

~r.  C~' = n .  C- in '  r is an integer (4.20) 

as follows from (4.17), (4.6), and (4.7). 
Thus, as in Section 3, we find that F is an integral, odd Euclidean lat- 

tice in R N, C defines a positive-definite, integral quadratic form on F, and 
/ - ' phys  is a lattice contained in or equal to the lattice F* dual to F. 

Next, we wish to make the connection between the two descriptions 
(boundary-bulk duality) of an incompressible QH fluid, (i) in terms of a 
topological C hern-Simons theory, and (ii) in terms of the representation 
theory of u(1)-current algebras, more precise. This connection has been 
described in the literature, starting with ref. 29; see also refs. 
19, 20, 30, and 31. A key fact concerning this connection is the following 
(see ref. 30): In the Chern-Simons theory described in Section3, 
(3.39)-(3.44), a physical state with U(1) charges qa concentrated at points 
(xa, Yo) of s'2, a = 1,..., P, is described by a conformal block c411 

VL(za; na) (4.21) 
1 :t 101 

of the chiral conformal field theory introduced in (3.19), (3.21)-(3.24) 
which describes the representation theory of N u(1)-current algebras. Here 

z,~ = x,, + 0', (4.22) 

and the flux vectors no satisfy the equations 

- r  (4.23)  no=q~C 

The gauge fields ~(o) are chosen to be the vector potentials of N uniform, 
neutralizing background "magnetic fields" with 

P 

~: ~o )=  ~ no (4.24) 
a = l  

The conformal blocks in (4.21) are given by branches of the generally 
multivalued functions 

I-~ (Za--Zb)(qa'qb) f~t[O'(ZI, 21,..., zN, zN) (4.25) 
l<~a<b<~P 
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where f,~0~ are single-valued functions on s • and (qa, qb) =-qa-r. Cqb,- �9 see, 
e.g., ref.-36. 

Note that the monodromy phases of the functions in (4.25) are 
precisely given by the phases 

exp 2rtiO(~, nb), n ,  = ~Tc (4.26) 

where 0 is given in Eq. (4.7). This makes the connection between 
hypotheses A2 of Section 3 and A2' above precise. 

The function in (4.25) describes the asymptotic behavior at large dis- 
tances of an amplitude describing a state of the QH fluid, where localized 
quasiparticle excitations of charge vectors ~, are present at the points 
(x~, y~) of g2 for a = 1 ..... P. By (4.25) and (4.26), the quantities 

0 ~ a , n b )  = (no,  - l  r nh) = n , C  nb (4.27) 

are apparently the values of the relative angular momentum of the excita- 
tions at (xa, ya) and at (xb, yb); l <~a,b<~P. If Q . ~ = Q . ~ b = - 1 ,  the 
two excitations describe two single electrons. ThTn the ~'elative angular 
momentum between these two electrons is given by 

L,b = (n,, nb) = (q~, qb) (4.28) 

The total, orbital angular momentum of the state described by the 
amplitude in (4.25) is then given by 

Lto, = ~ (qa, qb) (4.29) 
l < _ a < b < . P  

A 

We shall see later that in a tensor product of N u(1)-current algebras one 

can imbed, in general in many different and inequivalent ways, and ~u(2)- 
current algebraJ 42,431'7 This will enable us to describe electron spin, which 
has been neglected so far; see Section 6. 

So far we have assumed that the QH fluid is confined to a domain s 
in the (x, y) plane. The connection between states of Chern-Simons theory 
and conformal blocks of massless, chiral free fields expressed in (4.21) 
enables us to study incompressible QH fluids on arbitrary surfaces X, e.g., 
surfaces without boundary and of arbitrary genus. Although such systems 
cannot be realized in the laboratory, their study is of some interest, e.g., for 
purposes of numerical simulations. 

A ground state of Chern-Simons theory with an action given by (3.39) 
on a space-time A = ~ x R is given by a conformal block of the conformal 

7 For the classification of conformal embeddings see ref. 48. 
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field theory corresponding to (3.19), (3.21) on the surface Z" without any 
punctures. These conformal blocks span a linear space of dimension zl ~, 
where g is the genus of the surface Z, and ZI is the order of the Abelian 
group F * / F  which is equal to the discriminant of the integral quadratic 
form on F given by (q, q') = t] r .  C~', q, q' ~/ - , .1341  Thus, if/"phys = / ' ~ * ,  then 
the QH fluid on a surface Z of genus g, described by the Chern-Simons 
theory (3.39), has 

zl g degenerate groundstates, with zi = [F*/F[ (4.30) 

This result has previously been noticed in ref. 36. 
It is a widely accepted heuristic idea that conformal blocks like those 

in (4.21) are likely to capture some of the main features of electronic 
ground-state wave functions of an incompressible QH fluid of N electrons, 
provided that qet = Q" q~ - l r = QC n u = - 1  for a = 1 ..... P; see, e.g., ref. 36. Of 
course, this idea does not logically follow from our analysis. However, for 
the Laughlin QH fluid at a H =  1/3 and other simple fluids, it has been quite 
successful, t32"33) for reasons that are not entirely understood. Taking the 
idea seriously and Studying an incompressible Q H  fluid on a closed surface 
of genus g, one can make the following prediction of interest to people who 
do numerical simulations: We consider a gas of electrons on the surface Z. 
Let �9 denote the total flux of the external magnetic field B t~ through Z. 
For simple topological reasons �9 is an integer, in units where hie = 1. We 
imagine that there are N different species of electrons corresponding to 
charge vectors ~tll ..... ~]tN) which are a basis of the lattice F. Let li be the 
number of electrons of type ~ti~ on Z. Let us assume that the energies of 
eigenstates of ttie quantum mechanical Hamiltonian of the fluid which are 
orthogonal to all the ground states of the system are separated from the 
ground-state energies by a fairly large gap for a given value of �9 and for 
given li ..... IN. It is then tempting to imagine that a ground-state wave func- 
tion of this system is described by a conformal block of the conformai field 
theory with an action Is(~,  ~) as given in Eq. (3.19), where 

ct = Q(A + s (4.31) 

where A is the vector potential whose field strength is the given external 
magnetic field B c~ and I2 is the Levi-Civita spin connection on Z in the 
representation with conformal spin 1/2, corresponding to the fact that elec- 
trons have spin 1/2. By the Gauss-Bonnet  theorem, the integral of the cur- 
vature of the spin connection I2 over Z is given by 1 - g .  Standard 
neutrality conditions for the conformal blocks of the field theory with 
action I z (~ ,~) ,  with ~ as in (4.31), imply that 

N 

~, l~q''~'~ = c - ~ a r ( ~ + ( 1 - g ) )  (4.32) 
i = 1  
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and hence, by multiplying with Q, 

N~ = an(r + (1 - g)) (4.33) 

where N~ is the total number of electrons in the system. Equations (4.32) 
and (4.33) are necessary conditions for the ground-state wave functions of 
an incompressible QH fluid on a surface Z to be related to conformal 
blocks of an associated conformal field theory. Equation (4.33) reproduces 
the "shift formula" of ref. 37. 

Whatever we have said about QH fluids composed of electrons applies 
also to QH fluids composed of holes after exchanging "e" and "h" ("left" 
and "right"). In our effective description, valid on large distance scales and 
at low frequencies, subsystems composed of electrons and subsystems com- 
posed of holes are independent of each other. 

The main result established so far is the fact that the physics of an 
incompressible QH fluid in the scaling limit is coded into a pair of integral, 
odd Euclidean lattices F e and F h. The purpose of the next section is to 
summarize our results concerning a partial classification of such lattices 
and to apply these results to the analysis of incompressible QH fluids 
corresponding to experimentally observed plateaux. 

5. G E N E R A L  RESULTS ON THE C L A S S I F I C A T I O N  OF 
QH LATTICES 

We start this section by recalling the notation introduced in Section 1 
and summarizing the main results of Sections 3 and 4. 

Let V be an N-dimensional, real vector space with inner product (., .). 
Let {xl}tu= ~ be a basis of Vand  {~,}u=~ the basis dual to {x,}~=,. A vec- 
tor v e  V can be represented as a column vector f = ( v  ~ ..... vN) r, with 
v t =  (v, ~i), or as a row vector v = (vt ..... vN), with vl = (v, xl), I =  1 ..... N. 
Then 

N N 

*= E E (5.1) 
I = 1  1 = 1  

and 

where 

N 

E v,v"=E v'c,j 'J=E 
l =  1 I , J  I , J  

(5.2) 

Cw = (xl, xs) and (C-t)t . l= (~t, ~.r) (5.3) 

are the matrix elements of the Gram matrices corresponding to the bases 
{x,} and {~'}. 
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A basis {el}~u=, of V is called integral if its Gram matrix, henceforth 
denoted K, with matrix elements 

KIj= (e l, es) (5.4) 

is integral. It determines an integral lattice F c  V given by 

{,__ fora,,,} 
Let {e l} ~=, be the basis of V dual to {el} IN__,. Its Gram matrix is given by 
K -  ~, with 

( K - ' U  = (e I, e ~ ) 

It generates the dual lattice 

= ~n = y'  F*  n / e l :  

L 
n ~  71, for all I}  

A vector v �9 V belongs to F iff the components  v I = (v, e I) of ~ are integers; 
it belongs to F*  iff the components  vt = (v, el) o f v  are integers. 

The main results of Sections 3 and 4 can be summarized as follows 
[see Eqs. (3.62)-(3.64) and (4.14)-(4.20)-I: Asympototically, on large dis- 
tance scales and at low frequencies, an incompressible QH fluid is charac- 
terized by two integral, odd Euclidean lattices F~ and Fh with integral 
quadratic forms (-,.), ,  on Fe and (- ,-)h on F h and visible vectors Qe ~ F *  
and Qh e F~* with the property that, for every vector q e F.,., 

(Q.,., q),. = (q, q).,. mod 2 (5.6) 

The Hall conductivity a n is given by 

f i  l l  ~ Ge - -  Gh 

with 

a.~ = (Q.,., Q.,-)x (5.7) 

for  x = e ,  h.  

Vectors in F.,. label multi-electron-hole configurations. Configurations 
of arbitrary quasiparticles are labeled by vectors in a lattice (F.,.)phy s with 

F,. _ (Fx)phy= z F.* (5.8) 
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[see (3.50)]. With each vector m e  (/-'.v)phys one can associate the electric 
charge of the corresponding state (normalized such that  the charge of the 
ground state vanishes) which is given by 

q~t = (Q.,-, m )  (5.9) 

and a statistical phase exp in0x(m, m), with 

0x(m, m ) -  = (m, m).,_ mod  277 (5.10) 

Our  purpose is to summarize  some of our main results concerning the 
classification of these data. Since our  entire analysis is symmetr ic  under 
interchange of x = e with x = h, we shall drop  the subscript x whenever 
possible. 

Thus,  let (F, Q e F * )  be an N-dimensional  " Q H  lattice," with 
F ~ _ F * ~  V ~  N. Linear t ransformations of Ru mapping  F onto itself 
form a group, denoted by GL(N, Z), which consists of all integral NxN 
matrices S = ( S I s )  of determinant  det S =  _+1. Hence two pairs (KI,  Q~) 
and (K2, Q2) of positive-definite, integral NxN matrices and visible v'ec- 
tors in F r describe the same Q H  fluid iff 

KI=SrK,_S, Qj=QzS, for some SeGL(N,Z) (5.11) 

This will be abbreviated by writing (K~,QI)~(K2, Q2). The group 
GL(N, Z) contains the subgroup O(F) of all t-fiose t ransf3rmations S that  
preserve the quadrat ic  form on F, i.e., 

SrKS= K (5.12) 

in a given basis. 
Every integral, odd lattice F has a basis s,, ~ N called "symmetric," [ ~ l l J  1 =  1 '  

such that 

(Q, q/) = 1 for all I =  1 ..... n (5.13) 

and hence K ,  = (q/, qt) is odd for a l l / .  In the dual basis, Q has components  
Q = (1 ..... 1). Fur thermore ,  there always exists a basis {q, el ..... eu ~}, called 
%ormal,'" such that  

( Q , q ) =  1, (Q, e t ) = 0 ,  I = 1  ..... N - 1  (5.14) 

and hence 

Koo = (q, q) is odd, Ktz = (el, el) is even (5.15) 

for I =  1 ..... N - 1 .  
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By a QH lattice we henceforth mean a pair of an integral, odd, 
Euclidean lattice F and a visible vector Q ~ F* satisfying the parity con- 
straint (5.6). Given a basis in F, a QH fluid is characterized by a pair 
(K, Q) of a positive-definite, integral matrix K and a row vector Q, with 
g.c.~ (Ql ..... Q~) = 1, where Q~ are the components of Q in the dua-] basis. 
Our aim is now to find invariants for pairs (K, Q) that enable us to dis- 
tinguish certain inequivalent QH lattices and-~re  useful for a partial 
classification of QH lattices. Details of our results will appear in a separate 
article.t 45~ 

Among the most elementary invariants of QH lattices are the following: 

1. The dimension N of the lattice F. 

2. The oddness of F (i.e., F is of type I, in the nomenclature of ref. 23; 
even lattices are said to be of type II and can apparently not describe QH 
fluids). 

3. The discriminant zt of the quadratic form ( . , . )  on F. It can be 
defined as the determinant of the Gram matrix K associated to a given 
basis of F. By (5.11), det K is an invariant. 

Note that the space F*/F of cosets of F*  modulo F is an Abelian 
group. Its order is denoted by IF*/FI. It is easy to derive that 

zl = det K =  IF*/FI (5.16) 

As pointed out in (4.30), zl is the ground-state degeneracy of the QH fluid 
described by (F, Q) on a torus. 

Lattices with LI = +1 are called unimodular, or self-dual, and appear 
only in the description of QH fluids with integer Hall conductivity (IQHE),  
while QH fluids exhibiting a fractional quantum Hall effect (FQHE)  are 
always described by non-self-dual lattices. 

4. An invariant Lm~x is defined by setting 

Lmax = min ( max (q~, q~)) (5.17) 
N {q l} l= l  J ~  I,.,.,N 

where the minimum is taken over all symmetric bases of F. Let q ~ be a 
basis vector for which (q ~, q ~ ) = Lmax. Since q ~ is an element of a sym- 
metric basis, it follows that qe~ = (Q, q ~) = 1 corresponds to a state of the 
QH fluid, where one electron with quantum numbers - q #  has been 
created from the ground state. By (4.28), Lmax is the minimum of the 
modulus of the angular momentum of a state describing two electrons with 
quantum numbers - q  ~' created from the ground state. 
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Since the matrix K =  (Kts) defined by Kts= (q,, qj) for  a basis {qt} 
minimizing maxs= l,...,N(qJ, q J), is positive-definite, Hadamard's inequality 
implies that 

= det K~< L~a x (5.18) 

In a real, incompressible QH fluid, Lma~ satisfies a universal upper bound 

Lmax ~< L .  < co (5.19) 

with L ,  ~ 9. To understand this, we recall that the suppression of relative 
angular momenta l between pairs of electrons with Ill < Lmax is due to the 
Coulomb repulsion between the electrons, which has a finite strength. 
Furthermore, if L~x  were very large, the electron density of the system 
would be so small that the formation of a Wigner lattice would lower the 
energy of the system. However, the formation of a Wigner lattice destroys 
the incompressibility of the system. 

It is easy to see 145~ that the bound (5.19) on Lm~x and a bound on the 
dimension N of the lattice F yield upper bounds on the numerator and 
denominator of the Hall conductivities an of incompressible QH fluids. 
Thus, if Lmax and N are bounded above, the possible values of the Hall 
conductivity of incompressible QH fluids form a finite set of rational 
numbers. 

We should ask whether one can find a universal upper bound on the 
dimension N of QH lattices. Unfortunately, we do not know any method 
of determining an explicit bound on N. However, heuristically, it is clear 
that N cannot be arbitrarily large in a real QH fluid. There are two reasons 
for that: A real QH fluid has a finite density of impurities. These impurities 
tend to cause mixing between different chiral edge currents, so that the 
number of independently conserved edge currents--which is the dimension 
of the QH lattice--is limited by the strength and density of impurities. 
Furthermore, the specific heat of the edge degrees of freedom of an incom- 
pressible QH fluid is proportional to the dimension N of the lattice F 
(which is equal to the central charge of the conformal field theory describ- 
ing the edge currents). Thus, finiteness of the specific heat of a QH fluid 
implies an upper bound on the dimension N. (These issues deserve, 
however, a more careful analysis.) 

We may now state our first general result concerning the classification 
of incompressible QH fluids. 

T h e o r e m  1. Consider an incompressible QH fluid described by 
two integral, odd Euclidean lattices Fe and Fh of dimensions N ~el and N ~h~, 
respectively. Assume that 

N ~, N ~'1 ~< N .  < oo (5.20) 
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and that the value of the invariant L,,a~ satisfies the bound (5.19) for both 
lattices Fe and Fh. 

Then the number of inequivalent pairs of lattices Fe and Fh satisfying 
(5.19) and (5.20) is finite. (It is bounded by a number depending on L ,  and 
N, . )  Moreover, the set of Values of the Hall conductivity 

0" H ~ O" e - -  O" h 

is a finite set of rational numbers. 

Remarks. Details of the proof of this theorem will be presented in 
ref. 45; see also refs. 23 and 24. Unfortunately, as N ,  and L ,  grow some- 
what large, the number of inequivalent pairs of lattices becomes 
unmanageably large. As long as N~<8 and A ~< 13, a complete list of QH 
lattices is known for 0 < tr H < 2. Fairly exhaustive tables will be given in 
Section 7 (see also ref. 42). 

Our bounds on the number of possible values of ~r H grows exponen- 
tially in N , .  

From now on, we focus our attention on the classification of pairs 
(F~,, Q eF,*)  of incompressible QH fluids composed of electrons, and we 
drop the subscript e. 

5. A lattice F is called decomposable iff 

F =  ] " l  (~) F 2  (5.21) 

for two sul?lattices F 1 and F 2 with the property that 

(q~,q2)=0 forall t h e F  ~ andall  t h e F  2 (5.22) 

Otherwise, it is called indecomposable. 
If F is decomposable, then F* is decomposable. A QH fluid is called 

composite iff the associated lattice F is decomposable. Otherwise, it is called 
elementary. Let F = F z 03 F2 ~ -'- ~ Fk be the decomposition of a lattice F 
into indecomposable sublattices, and let F* = F*  03 ... �9 F *  and Q = Qk, 
with QieFe*, be the corresponding decompositions of F* and Q. If trH 
denotes the Hall conductivity of a composite QH fluid with lattice f', then 

k k 
i a H = ( Q , Q ) =  ~ (Qi, Q i )=  ~ trH (5.23) 

i = 1  i = l  

; is the Hall conductivity of the elementary QH fluid with where tr n 
lattice Fe. 
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A pair (F, Q) of a decomposable lattice F and a vector Q ~/-'* is 
called improper iff, in the decomposition of Q = Q ,  + ... + Qk associated 
with the decomposition of F = F 1 • .-- 0) Fk, 

Q i=  0 for at least one i (5.24) 

Obviously, an elementary QH fluid with lattice Fi and vector Qi = 0 has a 
vanishing Hall conductivity. Moreover, it does not mix with any other 
components of a given QH fluid. We may therefore discard improper QH 
lattices (F, Q) throughout our analysis and focus on the classification of 
indecomposable QH lattices. 

Next, we discuss some further invariants of QH lattices (F, Q). 

6. In the basis of F*  dual to a given basis of F, the vector Q has 
integer components Q=(Q~ ..... QN)- The only GL(N, 7Pj-invariant 
associated with an inte'gral vector Q is the greatest common division 
(g.c.d.) of its components, 

q = g.c.d.(Q l ..... QN) (5.25) 

Geometrically, q -  1 is the number of points in F*  on the open, straight- 
line segment joining the origin of F*  to Q. Physically, +q  is the electric 
charge of the particles of which the QH fluid is composed (in units where 
e = 1 ). For a QH fluid composed of electrons or holes, we have that q = 1, 
which is equivalent to requiring that Q be a visible vector in F*. Since q 
is the only GL(N, 7/)-invariant associated with Q, visibility of Q implies 
that one can always choose symmetric bases of-/" for which Q = (1 ..... 1) 
and normal bases of F for which Q =  (1, 0 ..... 0); see Eqs. (5-.13)-(5.15). 
Given a fixed integral matrix K, the" ambiguity in choosing a basis in F 
with Gram matrix K is described by the group O(F);  see (5.12). An 
O(F)-invariant associated with Q is its orbit [Q ]  under O(F). It is an 
"experimental fact" about lattices of not too large dimension and not too 
large discriminant that the orbit [ Q ]  of the shortest odd visible vector Q 
is unique, and in most cases the orbit [Q]  contains only ___Q, i.e., Q is a 
"face vector" in the terminology of ref. 49. 

7. Let K = ( K u )  be the Gram matrix of a basis {e/}~v=~ of F, and 
K - '  the Gram matrix of the basis {~t} N=t of F*  dual to the basis {et}tu=t. 
By Kramer's rule, 

K -1 =A-1R  (5.26) 

where A = det K is the discriminant of the quadratic form (-, .) on F and 
g" is the matrix of cofactors obtained from K; clearly K is a positive-definite 

822/76/1-2-18 
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integral matrix and .4 is an integer, so that the matrix elements of K -  ~ are 
rational numbers. By Eqs. (3.15) or (5.7), 

a n = (Q, Q)  = ~ Q , ( K - ' )  'g Qj = .4 - l  ~ Q,K'JQJ 
I,J I ,J 

(5.27) 

Clearly, the length squared (Q, Q) of the vector Q is an invariant of a QH 
lattice (F, Q) [generally coarser than the orbit [ Q ]  of Q under O(F) dis- 
cussed in paragraph 6]. Since `4 is an invariant of F, 

7 = `4(Q, Q ) = Y ' .  Q,~tSQj (5.28) 
I,J 

is a numerical invariant of (F, Q). It is a positive integer. Although 7 is, a 
priori, an invariant of the pair (F, Q), it is actually often related to a 
numerical invariant of the lattice F alone. 

T h e o r e m  2. Let F be an integral, odd lattice with an odd discrimi- 
nant d, and let Q be an arbitrary odd vector of F*  [i.e., (Q, q ) -  (q, q) 
rood 2, for arbitrary q ~ F] .  Let 

) ,=A(Q,  Q) 

Then ), modulo 8 is an invariant of/7. 
The proof is an easy exercise; but see ref. 45. 
In general ~, =`4(Q, Q) need not be coprime to A. We define 

l =  g.c.d.(y, `4) (5.29) 

The integer l is called the level of a QH lattice (F, Q). Writing a n as a frac- 
tion of two coprime integers nN and dN, we have that 

= InN, d = ldn (5.30) 

An indecomposable QH lattice (F, Q) of level l = 1 is called a minimal QH 
lattice. 

8. Next, we attempt to characterize the lattice rphy s __~ F *  of vectors 
in F*  which are quantum numbers of configurations of quasiparticles 
created from the ground state of an incompressible QH fluid described by 
the QH lattice (F, Q); see Eq. (3.61) or the remark after (4.20). Obviously 

C * F~_C_ r p h y  s __ F p h y  s ~ F *  (5.31) 

o r  

F _  * c _ F *  rphy s __ rphy s c (5.32) 
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The discussion of the inclusions (5.31) and (5.32) determines four Abelian 
groups, Fphys/F,* which is isomorphic to  F*/Fphys, Fphys/Fphys,* and F*/F. 
The orders of these groups are denoted by p, p, r, and A, respectively. Then 
(5.32) implies that 

d = p2 . r  (5.33) 

This simple equation limits the possible choices of/"phys 

(a) If A is square-free, then 

either Fphy s = / - "  o r  /"phys = F* (5.34) 

In a system of noninteracting electrons, one obviously has that r p h y  s ~--- F. 
However, in this case, F =  IN = 7/U is self-duaL But if electrons interact with 
each other and tr,~ is fractional (FQHE),  then F r  and one expects 
that Fphy s = r * ,  as suggested by the analysis of the simplest fractional QH 
fluids, such as the Laughlin f l u id s J  16"17'321 

(b) If A =p2,  then 

either Fphy ~=F ,  or F c  Fphy~-- * --  F p h y  s C F*, o r  r p h y  s = F *  

(5.35) 

The alternative, F c  Fphys = FphysC= F*,  can sometimes be excluded by 
showing that there are no self-dual lattices between F and F*. In this case, 
Fphy s = F*  is the alternative which is most likely realized in an ac!ual QH 
fluid of interacting electrons. 

(c) If dn = A/I = p2r for some p = 2, 3 ..... then if Fphy s properly con- 
tains F, one can prove that there are quasiparticles of fractional electric 
charge satisfying Bose or Fermi statistics. ~45~ If Fphys/F has order p, then 
these quasiparticles are in fact local relative to all other quasiparticles of 
the system. A QH fluid with such a spectrum of quasiparticles would be 
somewhat exotic, and we expect that, again, Fphys = F*. 

It should be emphasized, however, that the issue of whether /~phys 

properly contains F or whether Fphys = F* lies beyond the scope of the pre- 
sent analysis and can only be decided on the basis of a detailed understand- 
ing of the quantum mechanics of incompressible QH fluids. Moreover, it is 
worth remembering that the Basic Hypothesis A2 of Section 3 or A2' of 
Section 4 puts nontrivial constraints on the charge-statistics relation for 
arbitrary quasiparticle excitation in Fphy s. As a consequence, it is not 
always possible to set Fphy~ = F*  in the general case of nonminimal QH 
lattices. We will not pursue here those issues, referring the interested reader 
to ref. 45 for further details. 
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9. Let us now assume that  we consider a Q H  fluid described by a 
Q H  lattice (F, Q)  and with Fphy s = F* .  A quanti ty of considerable theoreti- 
cal and experimental  interest is the smallest, nonzero, fractional electric 
charge of a quasiparticle appear ing in this system. We define 

q* = min I(Q, n)l (5.36) 
n~ F*.  (Q, n)~O 

Let n = ~rK be the flux vector corresponding to a charge vector ~ of a 
quasiparticle n ~ F *  (~ gives the components  of n in the basis of F*) .  Since 

qet = (Q, n)= Q . ~= QK- ~n r= ,6 -'QKn r (5.37) 

and QKn r is an integer for arbi t rary n, and q* is an integer multiple of 

,6 -  ~. In general q* is not equal to ,4-  ~, and we may  define an invariant g 
of (F, Q)  by setting 

q .  = g,6 - 1 (5.38) 

By (5.37), 

g = g.c.d.((QR)~ ..... (QR)N) (5.39) 

where (QR)~ is the ith component  of QK. Since QF;K= AQ, where Q is 

visible, and since K is an integral matrix, it follows that  g divides ,6. The 
invariant 7 is given by y = QKQr; see (5.28). By (5.39), g thus divides Y. 

Hence g divides the g.c.d, of y and ,6, which is the level I of the Q H  lattice. 
This allows us to define an integer 2, the "charge parameter" of the Q H  
lattice, by setting 

/ g.c.d.(y, A) 
). = - = (5.40) 

g g.c.d.(OK) 

The invariant  2 determines the value of the smallest, nonzero fractional 
electric charge q* in terms of the denomina tor  dn of the Hall conductivity 
O'H: 

1 
q* = - -  (5.41) 

2dn 

since q * =  g d - l =  gl-ldh I =).-IdHl, by (5.38) and (5.40). 
The numerical invariants of Q H  lattices found so far can be arranged 

in the form of a symbol  

(nnlg (5.42) 
N\NH/~. 
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with I =  g - 2  (the level), ,4 = / d H =  I~*/s e=lnH, and aH=nn/dm For 
minimal Q H  lattices, 1 = 1 and hence ,;t = g = 1 and ,4 = dH. 

10. Next, we define a more subtle invariant of QH lattices (F, Q) 
related to their spectrum of Laughlin vortices and their statistical phases: the 
genus of a lattice F (see e.g., refs. 23 and 24. The Abelian group F*/F is 
determined by N positive integers d~ ..... do, some of which may be equal 
to 1. They have the propeties that 

di divides di+, and 

,4 = det K-~ d, d2... do (5.43) 

Geometrically, there is a basis {rl}~v=, of F such that {d i ' r / } ~ = ,  is a basis 
of F*. Thus the group F*/s has the following factorization into cyclic sub- 
groups 7/a,: 

F*/F"  7/a, x . , .  x z7,^, ( 5 ,44 )  

The physical interpretation of (5.44) is that if .F'phy s = F * ,  then the number 
of factors in (5.44) for which dt>l is the number of different elementary 
quasiparticles, or Laughlin vortices, of the QH fluid. 

QH lattices always involve an odd lattice F. Thus all vectors n + F of 
F*/F have the same length (n, n) mod 7/: 

(n + q, n + q) = (n, n) + 2(n, q) + (q, q) 

= (n, n) modT/ 

for all q e F. Hence (-, .) defines a quadratic form oa on F*/F with values 
in Q rood Z. By (5.6), the squares of the statistical phases exp/s0(n, n), i.e., 
the monodromies, associated with vectors n e F* uniquely fix the quadratic 
form 0 on F*/F and conversely. 

We now define the genus of a lattice. Two lattices Ft and F2 have the 
same genus iff they have the same dimension, the same parity (or type), 
and there is an isomorphism between F*/F, and F*/F2 which preserves 
the quadratic form ,9 (i.e., the monodromy phases of the vectors in F*). 

Transcribed in physical jargon, two odd lattices F, and F 2 with equal 
dimension have .the same genus iff they have isomorphic families of 
Laughlin vortices with identical monodromy phases exp i2rcO. 

It should be emphasized that, in general, there can be several 
inequivalent lattices in the same genus. In fact, the number of equivalence 
classes in a given genus tends to oo as N---, ~.t24~ For fairly small values 
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of N (e.g., N~<7) and of zJ (e.g., LI ~<25), the situation is, however, much 
less discouraging than suggested by this general result, so that the genus is 
a very useful invariant for the classification of QH lattices which has a 
fairly direct physical interpretation. 

11. In the following, we summarize some interesting congruences  

between the various invariants of QH lattices discussed so far. Proofs of 
our results will appear in ref. 45. A first example of such a congruence is the 
one stated in Theorem 2, i.e., if (F, Qa) and (F, Q2) are two QH lattices 
with the same F, then 

~ I = z I ( Q I ,  Q I ) - A ( Q 2 ,  Q2)=~2 m o d 8  (5.45) 

A second example is the following result: 

T h e o r e m  3. Let (F ,Q)  be a QH lattice, and assume that d and 
= LJ(Q, Q) are odd  integers. 

Then the dimension N of F is odd, and 

) , = N  m o d 4  (5.46) 

Equation (5.46) generalizes the equation an  = 7 = N valid in QH fluids 
of noninteracting electrons. For minimal QH lattices (i.e., l = 1 ), Theorem 3 
can be sharpened. 

T h e o r e m  4. Let (F ,Q)  be a minimal QH lattice 
t' = n n ,  zl = dH). Then: 

(a) d ,  is odd, and F * / F  "~ 2va,. 

(b) If nH is even, then the dimension N is even. 

(c) If n n is odd, then N is odd, and n n ~ N  mod 4. 

(so that 

Theorem 5. If ( F , Q )  is a QH lattice with an even charge 
parameter 2, then the invariant g = l /2 is even, too, if either dn is even and 
nn is odd, or d n  is odd and nn is even. If 2 =  g =  2, then 

F * / F ' . .  Z4a . (5.47) 

Proofs of these results will appear in ref. 45. 
As indicated in part (a) of Theorem 4, there are apparently no mini- 

mal QH lattices corresponding to a Hall conductivity an  = n n / d n  with an 
even denominator. Since this is a fundamental result for the analysis of 
plateaux at a n =  1/2, observed in double-layer systems, ~5) we state it in a 
separate theorem. 
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T h e o r e m  6. The charge parameter 2 of a QH lattice (F, Q) of 
arbitrary dimension N corresponding to a Hall conductivity 
an = (Q, Q ) = n H / d  n with an even denominator dn is even. 

By Theorem 5, we have that the invariant g defined in (5.39) is then 
even as well, and hence, by (5.40), the level I of such a QH lattice is a mul- 
tiple of 4. Thus there are no minimal ( /=  1) QH lattices with even 
denominator dn. However, in view of Theorems 5 and 6, there are still 
some distinguished QH lattices (F, Q) corresponding to a Hall conduc- 
tivity an  with an even denominator, namely those whose level l =  2g is 4, 
i.e., 

2 =  g = 2 (5.48) 

In this case, Eq. (5.47) implies that F * / F ' . .  J~4dl/" 
These results have the following interesting consequences: If (F, Q) is 

a QH lattice corresponding to a Hall conductivity an  = n n / d H  with even 
denominator dH, and if Fphy s = F * ,  then there are quasiparticles of electric 
charge q* = 1/2dR [see (5.4)], where ). is even. In particular, for a n =  1/2 
or a , =  5/2, one predicts the existence of quasiparticles of charge +e/4, 
where e is the elementary electric charge. This theoretical prediction could 
be tested experimentally. 

We recall that one of the basic physical hypotheses on which our 
analysis of incompressible QH fluids is based is that a configuration of 
quasiparticles described by t !~ F with odd electric charge is a fermion, 
while if the electric charge is even it is a boson. This expresses a relation 
between electric charge and statistics. It is natural to ask whether there is 
such a relation between charge and statistics for eonfigurations correspond- 
ing to arbitrary vectors n ~ F*. In the following, we answer this question in 
the affirmative for minimal QH lattices with an odd denominator d n. 

12. A charge-statistic theorem. The purpose of this paragraph is to 
show that, for any minimal QH lattice (F, Q) corresponding to a Hall con- 
ductivity an=riM/dR with an odd denominator dR, the statistical phase 
0(n, n)--see Eq. (5.6)--of an arbitrary vector n e F*  is fixed by its electric 
charge qel = (Q, n). This is a theorem on the connection between charge and 
statistics. We shall see that this connection is fixed by an  alone. This is due 
to the fact that the genus (see paragraph 10) of a minimal QH lattice with 
odd dR is fixed by an.  

Special cases of our general theorem have been noticed before. It is 
well known that there is a charge-statistics connection for the Laughlin 
fluids corresponding to an  = I /dn,  with d n odd. For certain hierarchy QH 
fluids, a charge-statistics connection has been found by Block and Wen. 1461 
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Our first observation is that, for a minimal QH lattice (F, Q) with an 
odd du, 

F*/F ~ 7/ d, , (5.49) 

[i.e., d~ . . . . .  d N - ~ =  1, dN= d , ,  in Eqs. (5.43), (5.44)]. A generator of 
F*/F is the vector Q. For, the multiples rQ, r = 0, 1, 2,..., of Q form a sub- 
group of F*/F, whose order we denote by r , .  Hence r , Q  ~ F, and there- 
fore 

( r ,Q ,  n) . . . .  l r r ,  

for arbitrary n e F*. Since the invariant g = 1, for a minimal QH lattice, 
r , / d ,  must be an integer. Hence r ,  = dH, and 

F*/F= {rQ}d'_o ' = Zd,, 

(this proves part of Theorem 4a). In this situation, nH= du(Q, Q) fixes the 
genus of the lattice F, i.e., it fixes the quadratic form 3(n) - (n, n) mod 7% 
n ~ F*,  introduced in paragraph 10. For, thanks to (5.49), every n E F*  can 
be written as n = rQ + q, q z F. Then 

n H 
O(rQ + F)  = r-'(Q, Q) = r 2 ~ mod 7/ (5.50) 

This shows that ~9 is fixed by the qua&'atic class of n• modulo dH, which 
thus fixes the genus of F. In particular, the monodromy phases 
exp 2iTr0(n, n) of all vectors n e F*  are fixed by r, which is fixed by the 
electric charge of n rood// ,  and by nH and du. We would like to show that, 
not only the monodromy phases, but the statistical phases, or half- 
monodromies exp inO are fixed by the electric charges. The key idea here 
is to use the parity constraint 

(Q, q ) =  (q, q) rood2 forall  q e F  (5.51) 

[see (5.6)1. Thus for n = rQ + q, q e F, the statistical phase is 

/~(n) 
:=  0(n, n) = (n, n) - r2(Q, Q) + (q, q) mod 2 

d ,  

= r2(Q, Q) + (Q, q) rood 2 (5.52) 

while the electric charge is 

e(n) 
- - =  (Q, n) = r(Q, Q) + (Q, q) (5.53) 
dN 
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and hence 

Now, if n H is odd, 

/a(n) -= r2nH + dH(Q, q) mod 2dR 

e(n) = rnH + dH(Q, q) 
(5.54) 

n , / a (n)=e(n)  2 mod 2d H (5.55) 

and since g.c.d. (n H, 2dR)= 1, n H is invertible modulo 2dR. Its inverse 
mod 2dR is denoted by (nn) -~. Then Eq. (5.55) implies the following result: 

T h e o r e m  7 (Charge-statistics connection): 

, ~ ( n )  2 
q e l . ( n ) = ( Q , n ) = e ( n ) ~ o ( n , n ) = ( n H )  - mod2  (5.56) 

dH d,v 

This is the desired connection between charge and statistics, provided 
nH is odd. If nH is even, then it is no longer invertible mod 2dR. Defining 

(nH)-J := 2(2nil)- '  +dH (5.57) 

where (2nil) -~ is the inverse of 2nil modulo dM, we find that the 
charge-statistics connection (5.56) still holdsJ 4sj 

If (F, Q) is a minimal QH lattice with an even denominator d , ,  and 
hence 2 = g = 2, it is tempting to think that charge and spin of a vector 
n e F* determine its statistical phase. (We realize that we have not defined 
the "spin" of vectors in F*;  but see ref. 45). For nonminimal QH lattices, 
the electric charge in general does not determine the statistical phase 
(except for vectors in F). For more details, see ref. 45. 

This completes our survey of general results on the classification of 
QH lattices. It should be remarked that a complete classification of one- 
and two-dimensional QH lattices, based on results of Gauss, is known, and 
that the classification of three-dimensional QH lattices with small Lma~ is 
possibleJ 421 

6. THE ADE-(~ C L A S S I F I C A T I O N  OF QH LATTICES 

In this section we complement the general results discussed in Sec- 
tion 5 by presenting a more constructive analyses of QH lattices. 

An N-dimensional, integral Euclidean lattice F contains a dis- 
tinguished (N-k)-dimensional  sublattice Fw,  the so called Witt sublattice 
(k = 0, 1 ..... N), 

F w ~ ( ~ k  c F (6.1) 
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Fw is defined to be the sublattice of F generated by all vectors of length 
squared 1 and 2. One shows that 

F w  = Froot t~ It (6.2) 

where 1/is an/-dimensional, simple hypercubic generated by l orthonormal 
basis vectors of length 1, and Froot is a direct sum of root lattices of the Lie 
algebras A, ,_  l = su(m), D,,+2 = so(2m + 4), m = 2, 3 ..... E6, ET, and Es. 

Since F is integral, it also contains a maximal sublattice (9 k of dimen- 
sion 

k = N -  dim F w  (6.3) 

generated by vectors of length squared 3, 4 .... and orthogonal to Fw.  Thus 
we have the inclusions 

(6.4) 

The sublattice F w O ( 9  k is called the Kneser shape of F. I-'3) The Witt sub- 
lattice F w  can be further decomposed: 

F w  = F~d~) I~w (6.5) 

where l~sd is the direct sum of It and of all the E8 root lattices contained 
in Fw.  Clearly F~.d-- * -- F,d is self-duaL 

Thus (6.4) can be sharpened by writing 

- -  ( Z  * * 1-'sd(~ l ~ w ~  ~k C F ~ F *  _ Fsd(~ ~"w(~) (-.9 k (6.6) 

and hence 

r =  r , , , ~  r174 : *  = r *  (6.7) 

If (F, Q) is a QH lattice then, by (6.7), the corresponding QH fluid is 
composite: In accordance with (6.7), 

Q = Q , d + Q '  

and 

trH = (Q, Q) = (Q~d, Q,a) + (Q', Q') = trmd+ tr'H (6.8) 

By construction, 

Fs~ = It @ FeB (6.9) 
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where FEB is a direct sum of E8 root lattices. Accordingly, Qsd= QI+ QEs, 
and (FEB, QEs) would have to be a QH sublattice. But FeB is an even lattice 
and therefore does not correspond to an incompressible QH fluid of elec- 
trons or holes. (It might, however; appear in the study of a QH effect for 
surface layers of superflui d He 3, as studied in ref. 21.) Thus, for QH lattices 
(F, Q), F does not contain a FeB sublattice. The QH sublattice (1/, Q/) 
describes, of course, a QH fluid exhibiting an integer quantum Hall effect. 

In the following we may always assume that F is indecomposable, and 
then 1/= ~ ,  i.e., / =  0. Thus, 

l~w= Fw (6.10) 

does not contain any FE, or 11 sublattices. 
Returning to the decomposition (6.4), we note that F/(Fw~(Pk)"- 

(F*OO*)/F* is a finite Abelian group, henceforth denoted by c~ and 
called the glue group. Clearly 

qj~7/p,X . - -xZI ,  ' (6.11) 

where Pt ..... Pr are numbers >1, with PilPi+~, i = 1  ..... r - I ,  and r<<.N. 
The generator of 7/p, can be interpreted, geometrically, as a coset 
gi+ ( F w +  (.9~), for some vector g ieF .  If we like to work with a unique gi, 
we may choose gi to be the shortest vector in its coset. This vector is called 
a gluing vector. It then follows that 

F =  ( g ,  ..... gr, F w ~ , )  (6.12) 

Returning to (6.4), and recalling that IF*/FI = A, we find that 

IF*/Fwl. 1~'/~gk[ =A ICSI2=A f l  p~ (6.13) 
i ~ l  

The order of IF*./Fw[ is easy to calculate if we know which root lattices 
appear in Fw. It is well known (see, e.g., ref. 42) that 

IF*/Fwl = det C (6..14) 

where C is the Cartan matrix (i.e., the Gram matrix of a basis of simple 
roots) of the root lattices appearing in Fw, with F *  the direct sum of the 
corresponding weight lattices. Then 

det CA~_~ =m,  det Co,.2=4, m = 2 ,  3 .... (6.15) 

and 
det CE6 = 3, det Ce~ = 2 (6.16) 
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In accordance with (6.4), every glue vector g can be written as f~ + v, where 
f ~  F*,  and v~ (9**. Following ref. 23, we introduce the following nota- 
tions: 

(a) If Fw is the root lattice of A .... ~, we choose a basis in F *  con- 
sisting of elementary weights dual to a basis of simple roots of Fw. The 
elements {fl"}~'__-~t of such a basis can be labeled by their m-ality a, and we 
abreviate f ~  by [a].  The 0-vector is the weight vector of the trivial 
representation and is denoted by [0].  We have that 

( [ a ] ,  [ a ] ) ~ ( n " , n " ) =  - 
a(m - a) 

lql 
(6.17) 

(b) If F . .  is the root lattice of D,,,, m~>4, then [0]  stands for the 
0-vector (weight of trivial representation), [1]  stands for the weight vector 
of the spinor representation, [2]  for the weight vector of the vector 
representation, and [3] for the weight vector of the conjugate spinor 
representation. It is known that 

J~ 
( [1] ,  [ 1 ] ) = ( [ 3 ] ,  [ 3 ] ) = ~ - ,  ( [2] ,  [ 2 ] ) =  1 (6.18) 

(c) For Fw the root lattice of E7, there is only one weight vector to 
be specified, the one corresponding to the 56-dimensional fundamental 
representation, which is denoted by [ l  ] and has length squared 

( [ 1 ] , [ 1 ] ) =  ~ (6.19) 

(d) If Fw is the root lattice of E6, F *  is generated by Fw and the 
weight vectors of the 27-dimensional fundamental representation and of its 
contragredient representation which are denoted by [1] and [2],  respec- 
tively, and have length squared 

([1] ,  [ 1 ] ) = ( [ 2 ] , [ 2 ] ) =  (6.20) 

(e) If the (9k-sublattice is one-dimensional, k = 1, it is generated by a 
single vector x which is determined by its length squared s =  (x, x). The 
vector { dual to x then has length squared 1/s. The (9* component v of a 
glue vector gi is then a multiple of ~,, i.e., v = r~,, or v = (r/s)x. We then 
abbreviate v by Iris]. 

If the (9k sublattice is two-dimensional, k = 2, we choose a basis 
{x~, x2} in (52 and describe (92 by three integers a, b, c, where a =  (x~, xt), 
b = (x~, x2), and c = (x2, x2), so that (~, ~) is the Gram matrix of the basis 
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{x~, x2}. Then 1~/~21 = a c - b  2. The Co_,* component v of a glue vector g 
can be expanded in the basis xl,  x2, 

r I r~  
v = - - x t  +--= x2 (6.21) 

S 1 $2 

and we abreviate v by the symbol 

Jr, 
SI 

Thanks to Gauss' work in number theory, the classification of all two- 
dimensional d?-lattices is known. 

Fortunately, in our search for QH lattices (F, Q) for QH fluids corre- 
sponding to experimentally observed plateaux of an, the C0 sublattices of 
the lattices F that arise are essentially all one- or two-dimensional. This 
enables us to come up with precise predictions which we shall present in 
Section 7. 

After this digression we continue our general analysis of QH lattices 
(F, Q). Let us return to the inclusions of Eq. (6.4), 

FwOC~k~_F~_ * c  * * F - F w O C k  (6.22) 

By (6.5) and (6.10), Fw is an even sublattice of F. If F w #  Z ,  the inclusion 
of F w O  (_9~ in F must be proper, and hence the order of the glue group c~ 
is at least 2. Let 

Q = Q w + Q '  (6.23) 

with Qw~ F * ,  Q '~  ~ ' ,  be the decomposition of the Q vector correspond- 
ing to (6.22). Since Fw is even, condition (5.1) implies that 

(Qw, q)_=0 mod2  (6.24) 

for all q ~ F w ,  i.e., Q w e 2 F * , .  Thus, by Eqs. (6.17)-(6.20), 

(Qw, Qw) >i 2 (6.25) 

unless Q w = 0. Now 

* . =  (O', Q') + (Qw, Qw) 

>~ (Q', Q') + 2 (6.26) 

unless Q w = O. 
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Our discussion is summarized in the following theorem. 

Theorem 8. Let (F, Q) be an indecomposable QH lattice corre- 
sponding to a Hall conductivity a n = (Q, Q) < 2. Then 

F w ~  Ok ~ F c  F* ___ F * . ~  ~0" (6.27) 

all inclusions being proper if F w #  ~ ,  Fw is a direct sum of root lattices 
corresponding to A,,_ 1, D,, + 2, m = 2, 3 ..... E6, and E 7 and 6k. is a k-dimen- 
sional lattice, with k >~ 1, generated by vectors of length squared 3, 4 ..... and 
Q ~ F *  is orthogonal to Fw (i.e., Q~  C0~'). 

This result has a rather remarkable corollary concerning symmetries of 
the edge currents of the QH fluid described by (F, Q): Let ff denote the Lie 
algebra--in general a direct sum of A,,, D~, E6, E7--whose root lattice is 
given by Fw. Then the algebra generated by the chiral currents Ofbl(u), 
I = 1  ..... N defined in (4.1) [see also (3.11) and (3.14)] and the vertex 
operators introduced in (4.3), 

{~,(n) VL(u; n): n ~ r~ .}  

where the y(n)'s are certain "cocycles" which can be found, e.g., in ref. 27, 
contains the non-Abelian Kac-Moody algebra f~l (at level 1 ). It is generated 
by the operators 

{e t �9 O~(u) r, y(n=) VL(u; n,)} (6.28) 

where {el ..... e,v_~-} is a basis of orthonormal [with respect to the metric 
given by the matrix C - t ,  see (4.2)] row vectors of the ( N -  k)-dimensional 
subspace of R N containing F w, and the vectors n, are simple roots in Fw, 
i.e., (n~, n~)= 2, for all ~. 

The operators in (6.28) are neutral, i.e., do not transfer any electric 
charge, since, by Theorem 8, (Q, n) = 0, for any n ~ Fw (provided cr H < 2). 

The Kac-Moody algebra ~ has only finitely many inequivalent, 
irreducible, unitary representations labeled by the cosets F * / F w .  Every 
such coset is represented by an elementary weigi~t f~ ~ F * .  

Let m E  F'phys~ F'* correspond to a ph~csical state of the algebra of 
edge currents of an incompressible QH fluid described by the QH lattice 
(F, Q). Let 

m = m w + m ' ,  with m w e F * ,  m'~(_9* 

be its decomposition corresponding to (6.27). Then m w = ~ + / ,  with 
ie  Fw, where f~ is an elementary weight corresponding to an irreducible, 
unitary representation na  of c~ 1 . The physical state labeled by m then trans- 
forms according to the representation na  under elements of c~ 1. 
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The Kac-Moody algebra c~ contains a subalgebra of global symmetry 
generators, the zero modes of the Kac-Moody currents, which generate the 
Lie algebra ~. The corresponding Lie group G =exp  ~ is the group of 
global symmetries of the edge degrees of freedom of the QH fluid. If a state 
of the algebra of edge currents corresponding to the element m e  Fphy s 

transforms under a highest-weight representation 7t a of G, then f l - m w  
mod Fw. 

Given a Lie algebra (# of rank N - k  t> 1, there are, in general, various 
conforrnal embeddings of Kac-Moody algebras S~(2)r at level r >/1 into the 
Kac-Moody algebra (q~ (see refs. 43 and 48 for reviews of conformal 
embeddings). Depending on the quantum mechanical properties of the QH 
fluid described by (F, Q), it is sometimes possible to interpret an algebra 
s"'d(2)r conformally embedded in (~, as an algebra of chiral edge spin 
currents describing the spin degrees of freedom of the edge states of the QH 
fluid. In this case the group G of global symmetries of the edge states con- 
tains SU(2)spin as a subgroup. The possible values of the spin s labeling 
irreducible, unitary representations of S/"d(2)r are given by s = 0, 1/2 ..... r/2. 

Conformal embeddings of current algebras s~d(p)q into .~, p = 2, 3 ..... 
q = 1, 2,..., may describe internal symmetries encountered in a description 
of the QH fluid valid, asymptotically, at large distance scales and low 
frequencies. For example, p may be related to the number of layers (or 
valleys) of the QH fluid. 

Thus, remarkably, our theory of QH lattices is clever enough to dis- 
cover that electrons have spin and thus, in spite of the external magnetic 
field applied to the system, the edge states of a QH fluid may carry chiral 
spin currents. This remark is important for the analysis of spin-sing!et QH 
fluids. Physical states of the edge current algebra of electric charge +1 
transforming trivially under SU(2)sp i  n then describe spin-polarized electrons. 
Our general theory predicts that there are  QH fltiids composed of spin- 
singlet "bands" of electrons and of "bands" of fully spin-polarized electrons. 
Similar remarks apply to internal symmetries. 

It may be clear at this point that our theory of QH lattices enables us 
in many cases to understand transitions observed in QH fluids, as, for 
example, the external magnetic field is tilted, keeping the filling factor v of 
the QH fluid fixedlS-"'l: If, for a given value nH/dH of the Hall conductivity 
cr H one can find several distinct QH lattices (F~,Q~) ..... (Fr, Qr), with 
(Q1, Q,)  . . . . .  (Q,, Qr), which, however, differ in that they have distinct 
global symmetry'groups and different degrees of spin polarization, then a 
QH fluid with Hall conductivity tr n = nn/dn is predicted to exhibit trans- 
itions when external control parameters, such as the in-plane component of 
the external magnetic field, are changed. 

All this will be discussed in more detail in refs. 42 and 45. 
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To conclude this section, we present a classification of Q H  lattices 
(F, Q)  with a one-dimensional  Cl sublattice and with Q or thogonal  to Fw.  
We also describe a series of Q H  lattices with "maximal  symmetry"  for 
which many  quantities of practical interest can be calculated explicitly. 

Theorem 8 and the results in a pa ragraph  6 of Section 5 [see also 
Eqs. (5.14) and (5.15)] yield the following general result of considerable 
practical interest. 

T h e o r e m  9. Let ( F , Q )  be an N-dimensional  Q H  lattice with 
a H < 2 and 

F w ~  ~ F ~  F*  c F * O ( 9 *  

where to = r is one-dimensional.  
Then Q is or thogonal  to Fw,  and there exists a normal  basis 

{q, el ..... eu_  1} for F [see Eqs. (5.14) and (5.15), i.e., (Q, q) = 1, (Q, el) = 0 ,  
I =  1 ..... N -  1 ], with the following properties: 

(a) {el ..... eu_  i} generate an even lattice Fo, with 

F w  ~- Fo ~ F *  c_ F~v (6.29) 

(b) 
(c) 

q = (dt t /nn) Q + to, where to e F * .  

The G r a m  matrix of the basis {q, e I ..... eN-1} has the form 

=\  ~r I-~oo] (6.30) 

where p is a positive integer, Ko is the G r a m  matrix of the basis 
{el ..... eN_ 1 } of Fo, and the dual components  w of the vector to are given 
by ogt = (to, e;), I =  1 ..... N -  1. Fur thermore ,  

A = det K =  (2p + 1 ) det Ko - ~gTo~ r 

= det Ko(2p + 1 - (to, to)) (6.31) 

and 

1 
aM = (Q, Q)  = ( K -  t)oo = d - t  det K o > ~  (6.32) 2p+l 

R e m a r k s .  1. It can often be ruled out that there is an even lattice 
Fo which is not self-dual [see (6.7)-(6.10)],  and which contains F w  
properly: 
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(a) If F * / F w  does not contain any nontrivial suivgroup, then 
Fo = Fw. As an application, if F w is the root lattice of E6 or E7, then 
Fo = Fw. Similarly, since F o cannot be self-dual, F o = F w if Fw is the root 
lattice of Dm, m >>. 4. 

(b) If Fw is the root lattice of A,,, then F o=  Fw, for m ~< 14. The 
first exception appears for A ls, corresponding to a symmetry group 
SU(16). 

(c) If Fw is a direct sum of root lattices, the situation is more com- 
plicated. For example, if Fw is a direct sum of four one-dimensional root 
lattices of A ~ there is an even lattice properly containing Fw and contained 
in F * .  However, the corresponding QH lattice is equivalent to one where 
Fw is the root lattice of D4. It can describe a QH fluid with a~  = 1/2. 

Thus, for not too large values of the dimension N, Fo= Fw is the 
typical case. 

See ref. 45 for more details. 

2. Definition. A maximally symmetric, elementao, QH fluid is one 
corresponding to a QH lattice (F, Q), where F is indecomposable, �9 = tPt 
is one-dimensional, Fo = Fw, and Q ~ (9* is orthogonal to Fw. For such a 
QH fluid, the matrix element Koo = 2p + 1 of the Gram matrix K given in 
(6.30) is the invariant Lma • defined in Eq. (5.17) of paragraph 4 of 
Section 5, provided t o , F *  is chosen to be of minimal length in its coset 
modulo Fw [see Eqs. (6.17)-(6.20)]. In that paragraph, we described 
reasons (e.g., the Wigner lattice instability) for expecting that 

2p+  1 =Lmax ~<L, ~ 9  

[see (5.19)]. By (6.31) and (6.32), 

(6.33) 

f r i l l  = 2p  + 1 - -  (to, to)  (6.34) 

Hence, a ,  has an absolute lower bound in this class of maximally 
symmetric QH fluids a ,  >1 1/Lmax >~ 1/L, .~ 1/9. Let 

Fw=FII~@ ... @F Is~ (6.35) 

be the decomposition of Fw into indecomposable root lattices of A,,_ t ,  

D,,,+2, m = 2 ,  3 ..... E6, and E 7. Let to= toc l j+  ...  +tol~.~, with toli~EF")*, 
be the corresponding decomposition of the vector to. Since, for an elemen- 
tary QH fluid, F is indecomposable, to"~ :r 0, for all i = 1 ..... s. Let NA be 
the number of A,,_ 1 root lattices, No the number of D,,+ 2 root lattices, 

822/76/I-2-19 
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and N6 and N7 the numbers of E6 and E7 root lattices appearing in (6.35), 
with NA + No + N6+ N7 =s. Then, by Eqs. (6.17)-(6.20), 

(m, (o) >>. �89 + No + 4N6 + 3N7 (6.36) 

Since an > 0, Eqs. (6.34) and (6.36) yield the following inequality. 

Theorem 10: 

�89 + No + ~N6 + 3N7 < 2p + 1 <~ L ,  (6.37) 

with L ,  ~ 9. 
Thus, the number s of sublattices of Fw appearing in the decomposi- 

tion (6.35) satisfies a universal upper bound, s < 2 L ,  ~ 18. 

3. The family of QH lattices described in Theorems 9 and 10 can be 
extended as follows: Suppose the Gram matrix of a normal basis o f / "  has 
the form 

/ '  
K= \ v ~  I 0 (6.38) 

with 

where Ko 
r *  _~ r * .  

Then 

Q = ( 1 , 0  ..... 0) (6.39) 

is the Gram matrix of an even lattice F o with Fw~_Fo C 

(o) 
LI = det Ko( A - (m, m) (~)) and 7 = det Ko(~ ) (6.40) 

where 

(o) (o) (o) (o) (o) 1 
z l = d e t K ,  y = A . ( K -  )oo 

Hence 

(o) 
7 ~(o) I = ~ r  ~t --(m, m)) -I  (6.41) O ' H = - - =  A (ol (o) 

z l -  (m, o )  ~, 

This completes our survey of general results on the classification of 
QH lattices. More details on these results and their proofs can be found in 
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refs. 42 and 45. The task that remains is to apply these r~esults to the 
analysis of experimentally observed incompressible QH fluids correspond- 
ing to specific plateau values of trn. In carrying out this task, the tables of 
Conway and Sloane tz3~ of low-dimensional lattices are extremely useful. 
Section 7 presents a survey. Further details will appear elsewhere. 

7. TABLES OF QH LATTICES A N D  O B S E R V E D  
P L A T E A U X  OF o H 

In this section we complete the discussion of Section 6 on the ADE-(9 
classification of Q H  lattices by providing explicit tables of such lattices and 
correlating them with corresponding values of tr n. In carrying out this 
task, we use the tables of integral Euclidean lattices compiled by Conway 
and Sloane, (23j whose notations we follow. 

Let F be an integral, Euclidean lattice with Kneser shape F w ~  (gk c F, 
where Fw is the Witt sublattice of F and d~ k is a k-dimensional sublattice 
of F generated by vectors of length squared 3, 4 ..... Then 

F =  (g ,  ..... gr, rw~(gk) (7.1) 

where gl ..... g~ are the gluing vectors (usually chosen as the shortest vectors 
in their FwO)(gk coset). 

(a) We describe Fw by giving a list of Am-1, D,,+ 2, m = 2, 3 ..... E6,  

and E7 whose root lattices are contained in Fw. 
(b) We describe ~k by specifying the Gram matrix of a '  basis 

{X 1 ..... Xk} of (.Ok. 

For k = 1, this Gram matrix is denoted by p, for some p = 1, 2, 3 ..... 
For k = 2 ,  it is denoted by (abe)z, with a = ( x ~ ,  xl), b = ( x l ,  x2), and 

c = ( x 2 ,  x2 ) .  
We shall not introduce special notations for k>/3, since our tables 

only contain lattices with k = 1 or 2. 

(c) Every glue vector g is decomposed as 

g=I~+v 

where f I E F *  is an elementary weight vector which we denote by 
[a~, a2 , . . . ] -  [ a , ]  + [az] + . - ' ,  where the notation [a ]  is the one intro- 
duced in (6.17)-(6.20), and veda* is denoted by [r/s] if k = l  and by 
[r~/s~, rJs2] if k = 2; see point (e) of Section 6, in particular Eq. (6.21). 

In our table of QH lattices, we shall also indicate the discriminant zl 
of the lattice and the maximal dimension N ,  = N,(A)  up to which we have 
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scanned all lattices, using the notation '4(N,), the order [aJL of the glue 
group if, the components of Q of vector Q, written in the basis {~1 ..... ~k} 
of d9* dual to the basis {xl,....xk} of dPk. To be precise, we list explicitly all 
the equivalent charge vectors [i.e., Q's belonging to a fixed O ( F )  orbit; see 
eq. (5.12)] associated to the QH lattice. In all cases considered, there are 
just two ( + Q )  or four vectors in each orbit. We only list QH lattices with 
an  < 2, so that by Theorem 8 (Section 6), Q belongs to (_0~'. 

Finally, we shall display the symbol for the QH lattice, N(nn /dn )~ ,  
introduced in Section 5, Eq. (5.42). We repeat here, for convenience, how 
the basic invariants can be read from the symbol. N is the lattice dimension 
and '4 = 2gdn its discriminant; 2 is the charge parameter and / = 2. g is the 
level. For minimal QH lattices, i.e., when 2 =  g =  1, we shall omit the 
superscript g and the subscript 2 from the symbol. 

It is rather striking that in all but three cases of Table II this symbol 
suffices to fully characterize the QH lattice. 

In the three exceptional cases, we add a sign to specify the genus of the 
lattice, [see 9~(1)~], following conventions of Convay and Sloane, (23) or if 
the genus is the same for both lattices, we merely distinguish the two QH 
lattices by a prime [see t2(10/7), 12(10/7)' and 9(6/5) 2 (9(6/5)~)'].  

A remarkable feature of Table II emerges if we focus on low-dimen- 
sional, minimal (level 1) QH lattices: To a fixed value of the Hall conduc- 
tance a n , there corresponds just one or no elementary quantum Hall fluid! 
The "missing fractions" will be reviewed explicitly in Section 7.2. For more 
details see refs. 42 and 45. 

7.1. Indecomposable  QH Lattices w i t h  a H < 2  and A ~<19 

Our main interest being in minimal (A = dn) QH lattices, which, by 
Theorem 4, necessarily have odd discriminant/1, we have omitted from our 
list the even-discriminant lattices with .4 = 12, 14, 16, and 18. This reduces 
the size of Table II quite substantially. We list separately, in Section 7.3, the 
QH lattices with A = 8 and d n ---2. 

Finally, we note that there are no QH lattices with discriminant '4 --2 
in the selected range of values for an. 

7.2. Values of O'H<2, dH<~19 Not  Corresponding to an 
Indecornposable QH Latt ice at Level 1 

One of the interesting features of Table II of QH lattices is the non- 
existence of minimal indecomposable QH lattices with dimension 
N<<,N,( '4)  for certain specific values of a n < 2 .  Furthermore, using the 
constructive method described in Section 6, one can readily check whether 
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Table I1. All Indecomposable Quantum Hall Lattices for o, . ,<2 and 
Discriminant &~<19 ( A # 8 .  12, 14, 16, 18) in Low Dimension 

269 

a(N.) I~'1 r w G [ g ,  ; g2;...] +-Q u(an)~ 

1 (18)  1 1 l r , (1)  
2(16) -- -- 

3(14) I 3, r ,(~) 

2 E 7 6~ [1, �89 2~ s(]) 
4 D9 12, [1, �88 4~ ~o(~) 

4(12) 2 De4,[1,�89 2r 4-(1)~ 
2 EVA)4, [1, 1, �89 2r 4-(I)~ 

5(12) I 5, r ,(~) 

2 A, 10, [1, �89 2r 2(]) 
3 E615, [1,~] 3r 7(]) 
4 D 7 20, [I, �88 4r s(3) 

6 E7 A2 30, [1, 1, -~] 6r ,o(~) 
4 D9(317)2[1, I 1 ~, ~] ~, + 3C, ,,(-~) 

6(11) 2 D66, [1, �89 2r 7(])~ 
4 DTAI t2 j [ I , I ,  �88 4~ 9(3)142 
5 & 15, [4,-~] sr ,o(]), ~ 
4 EvA312, [I, I, ~] 4r ,,(~)14, 

7(12) 1 7, .~ t(�89 
3 A221, [1,!]3 3r 3(3) 
4 D5 28t [I, �88 4r 6(4) 
2 E7 14t [1, �89 2r s(~) 
6 E6At42~[I , l ,~]  6r 8( 6 ) 
9 A863~ [4,-~] 9r 0( 9 ) 
12 DvA,84, [1, 1,~] 12r ,o(~) 
2 E, G '  5): [1, ~, �89 r - r 9({) 

r + 3r 9(9) 
2.2 D, (42 s)2 [1, ~, 0; 2, 0, �89 2r + 2r ,o(~) 
2.4 D9 At (6 2 1o)2 [0, I, 0, ~" 1, I, �88 .~, �88 2 r162  ,2(9) 
l0 E 7 A 4 70, ['1, 1, ~] 10r ,2(~)' 

See Section 7.3 

1 9, 

2 A, 18, [1, �89 
4 A~ 36, [1, �88 
5 A4451 [2, {] 
7 A6631 [3, ~] 
8 A7 72, [3, ~] 
2 A56t [3, �89 

2.2 D66~61[1,�89189 

8(10) 
9(8) r ,(~) 

4r ,(3) 

7~ ,I-D 

2r 6(])~ 
2r162 4 3 

- . s(~), 
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Table  II. (Continued) 

d(N,)  l(r /-'l),~k [g i ; g2 ;... ] -I-Q N (O'H)~ 

10{10) 3 Asl5, [2,-~3 3r 6(~1~ 
4 DsA,20~[I ,  1,�88 4~ 7(3)i4, 
6 D6A230~ El, 1,~3 6~ 9{6)~ 
8 AvA,40,[3,1,~] 8r 9(~)] 
2 E~(, -' ~h [I,O, �89 2~: ,(~),' -" 

2~,+2~2 {9(~)~)' 

II {8) 1 II ,  r ~(~) 

1 (3'~}2 r 2(~} 
~1 +2r 2(~) 
r  2{~} 

6 A2At66t [I, 1,~] 6~ 4(~) 
5 A,55, [1, U 5~ ~(~) 
3 E633, [1,~] 3~ 7{~) 
7 A677, [2, ~ ] 7~ 7(1-~) 
2 E722, [1,~] 2~ s{ 2) 
14 A6A, 154, C3, 1,~ ] 14~ s(~} 
2.2 O~ (, : ~}, El, -'_,, 0; 2, 0, �89 2r  ,(~} 

2~, -2r  s{~} 

13 {8) 1 13) ~ ~{~} 
2 A) 26~ [1, �89 2r =(~} 
3 A. ,39 , [ I , I  ] 3r s{ 3) 
2 Al(s lg) ,C 1,1 I - . . 

&+3r 3(~) 
10 A4A~ 130~ [2, l, ~ ]  10~ 6{~) 
6 As78,[1,~] 6r 6(6) 
4 D~(~- ' , )~[1 , , ,  , ]  r 1 6 2  ~(~) 
4 D, 52. [ I ,  I] 4r .1~) 
12 D~&156,[1. l.~3 12r .(~) 
3 E6(5, s)2 [1, ) 1 ]  

3& ~(~) 

15(8) 1 15, ~ t(~) 
4 D560~[1,�88 M 6( 4} 
7 A6 105, [I, }] 7r 7(~} 
6 A561 15,[1,�89 ~-]s 2~,+3r 7(~) 
2 E730z [I, �89 ] 2~" s(~5) 
14 A6A , 210. [2, I, h i  144 8(~) 

4 .2  D5 At 6, 20, [ I ,  I, 0, �88 2, I, �89 0 ] 2r __+ 2r 2 8(~} 
3 A2 {, sg)., [ I ,  ~, -~] 3r 4(3),6 3 

2~1 +42 ' s 4(~)1 
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Table II, (Continued) 

zJ(N,) [aJ] /"WCk fg l  ; g2 ;...] -I-Q N (O'H)~ 

2.2  D4(s2a)2[1 ,~ ,0 ;3 ,0 , �89  2r 6(~)i4, 
2r162 2 4 5 6 ( ~ ) 1  

. 5 ( r  3 A2A~ 151 [1, 1, .~l 3r 33 
t6_)3 6 AsA230113,1,-~] 6r 8',5 t 

2-2 D6 61 10, [1, �89 3,0, ~] 2~ 8(~)~ 

17(7) 1 17, ~- , (~) 
2 A~ 34, [1, I]  2~ .,(~7) 
1 (3 i 6)2 G 2(6)  

r162 , 2(~) 
- G + 2 r  2(~) 

2 AI (S I 7)2 [1,  I t 3(~7) ~, ~] r - r 

3(rv) 3r + ~2 31 

4 & 6 8 ,  [1, �88 4r ,(~) 
4 A3(s 29)2 [1, �88 �89 - 2 r  + r  5(~) 

2r162 2 ,t 

lo A,A, 170, D, I,~] I0r ~(r~) 
3 E~51, [I,H 3r ~(~) 

15 A, A.~ 2S5, [2, L ~] 15~ ,I~) 

4 D5(3123)21-I, 1 1 7(~) ~,~] G + 3r " 
- G + 5 r  2"I ~(~) 

19(7) 1 191 r ,(t~) 
1 i (4 5)2 r 2 (4 )  

3r 36 2(~) 
2r + r 20 

2 r 1 6 2  ~(~) 
2 A, (3 '13)2[1 ,1  I 3(~) ~,~] r  

r 23 2(~) 
3 A257, [ I , ~ l  3r 3(~) 

2 .2  A, A, (8 2 1o)2 [1, 1, �89 1,0,0, / ]  2r +2r 4(T~)14 
'2 2 ~ - 2 r  4(~) 

5 A495, [2, I]  5~ 5(~) 
12 .~3 A2 228~ [1, 1, I]  12r 6(~) 

5 A4(9~ ~,)2[1," ~ 6(~) ~, ~] ~, + 3~2 ~ 
")4 3G--r 6(~) 

4 D5 (5 ~ ~6)2 [1, �89 ~] ~ - -2~2  ~(~9) 
3r + 2~J2 ~s ~(r~) 

6 As (,o 4,3)_, [1, ~, -~] 4r +r , (~)  
3C, ~(~q) 
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a minimal, maximally symmetric lattice of arbitrary dimension exists for 
these fractions. In this subsection, we list the "missing fractions," i.e., those 
values of a H <  2 and dn <<. 19 that do not correspond to any minimal, maxi- 
mally symmetric QH lattice and for which no minimal indecomposable QH 
lattice with dimension strictly below some dimension J V > N . ( A )  exists. 
(We have used Theorem 4 to optimize our estimate on og'.) The value of 
oH and the optimal dimension JV are indicated in the symbol a te (Y) :  

d,=3 ](17) 
a,=5 ](la); ](z3) 
d u = 7  ~(15)  

du = 9 - -  

d. = 11 ~(10); ~f9); ~(9); ~ ( l l ) ;  ~(10); v~(9),'7 . 
d u =  13 5 . 14 . i3(9), ~ (10) ,  t~(lO); ~(11) ;  ,o ,2 25 ~(10) ;  ~(10) ;  ~ ( 9 )  
d u = 1 5  ~(10) ;  13 �9 ~(10) ;  23 ~(9) ,  ~3(11); ~ (9 )  

d ,  = 17 ~7(9); 9 (9 ) ;  ~ (8) ;  ~7(8); zs . V(8)  ; 2 s  ,9 i~(9), ~(9) ;  ~o 3~ ~(8) ;  ~ ( 9 )  
du 19 s ( 8 ) ;  lo 13 . Is . z9 32 33t9~. ~ (8) ,  ~(9) ;  ~ (9 )  = ~ (9 ) ,  ~ (8) ;  yr ~, ,, 

Of course, many among these values of cr H have been observed in 
FQH experiments. For some fractions, e.g., 5/3, 8/5, 9/5, and 11/7, the 
bound on the dimension ~" is high enough to practically rule out the 
possibility of a reasonable, elementary, minimal QH lattice. In those cases 
we have but two options to understand the observed incompressible state: 
either we must consider nonminimal (i.e., higher-level) QH lattices, at the 
price of encountering more complicated quasiparticle spectra (no 
charge ~ statistics connection and/or exotic fractional charges for elemen- 
tary vortices); or we must account for the observed an by means of a com- 
positefluid, using, for example, electron-hole conjugation. 

The second option, compositeness, generally appears to be simpler 
and more natural. We shall discuss the examples cr H = 5/3 and 8/5 explicitly 
in Section 7.5. 

We also note that there is no elementary QH fluid with oH=5/13.  
Moreover, this value of OH has no natural composite explanation, since 
crH= 1/13 and a u = 2 / 1 3  fluids have not been observed, and, as 5/13 < 1/2, 
electron-hole conjugation (5/13= 1 - 8 / 1 3 )  can presumably be excluded. 
This result should be contrasted with predictions of standard hierarchy 
schemes, Haldane-Halperin or Jain-Goldman/5~ which predict an incom- 
pressible state corresponding to an=5~13. Up to now, no a u = 5 / 1 3  
plateau has been observed experimentally. Its persistent absence would 
represent an interesting, partial experimental justification of the additional 
hypotheses on which the classification presented in this work is based, 
namely low dimension and minimality of the QH lattices describing chiral 
edge currents. 
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We also emphasize the absence of indecomposable Q-H lattices at 
tru= 8/15, 9/17, and 10/19, which are three successive unobserved plateaux 
in the "second main sequence," a H = m / ( 2 m - 1 ) ,  m---1, 2 ..... of fractions 
converging to 1/2. In Section 7.4 we explain why an observation (or not) 
of these fractions would be an interesting experimental input for our 
theoretical understanding of quantum Hall fluids. 

7.3. QH Lattices wi th  d H = 2,  A = 8 

If fill=nil~2, then the invariants g and 2 [-see Eqs. (5.39), (5.40), 
paragraph 9, Section 5) are at least 2 (Theorems 5 and 6, paragraph 11, 
Section 5). Thus A is divisible by 8. We present in Table III all indecom- 
posable QH lattices with 1= 2. g = 4  and A = 8 in dimension N ~  10. Since 
A and N .  are fixed, they are not displayed. Otherwise notations are identi- 
cal to those used in Table II. Only au  = 1/2 or 3/2 can appear since we 
have limited ourselves to a n < 2 as in Table II. 

7.4. The Maximal ly  Symmetr ic  A and E Series 
of Indecomposable QH Lattices at Level 1 

As examples of natural families of QH lattices we present the maxi- 
mally symmetric, indecomposable QH lattices with a Witt sublattice given 
by a root lattice of A or E. [-The (.9 sublattice is one-dimensional, and 
F e = F w ;  see (6.29), (6.31), and (6.32).] The Dynkin diagrams describing 
these Witt sublattices are given in Fig. 2a. 

The Gram matrix K of a normal basis {q, el,..., eu_ ~} of F, where 
{el ..... eN_ ~ } is a basis of simple roots for Fw, has the form 

K =  ~ r  ("~- ] (7.2) 

Table III. Al l  Indecomposab le  Quantum Hall Lat t ices fo r  o H = 1 / 2  or 3/2 
and Discriminant A = 8 in Low Dimension ~. 

I~I r.,~k[g] +Q u(a.)~ 

I (313)2 ~t+~2 2(�89 
2 At A181 [1, 1.�89 - 2~" .~(~)'2t. 
2 A38,[2. �89 25 4(~)2'2 
2 D.,81 [2,�89 25 .,+l(~)212 
3 2 i i 3 , E6 (4 7)2 11, ~, ~] 3~2 8(~)2 
6 E6A ,A124  ~ [l, I, 1,-~] 62 9(.~)~ 
6 E6A~24, [1.2, I]  65 m(�89 

" N<~IO. 
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(a) o-o--o . - -o- -o  A m - I  , m = 2 , 3 , . . .  

m -  I dots 
~ E7 

D5 --- ,, ES" 

io i l  

o---o--: A 2 �9 A n --- E 3 

o--o--~i6,--o--o E 6 

~  A4 --- . E4 "  

(b) A-ser ies  Volues of o" H E-ser ies 

I ' w = #  

A t 

Az 

A3 

A 4 

AS 

AS 

A7 

A s . 

Z / 5 ~  
3/V~ 

4/9 

5/11~ 

Sit3\ 

rIoet 1 
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9/t9 

5/9 

r(7/,3) 
(o/15) 
(9/rr) 

FW=Is 
E7 

E6 

ES 

E4 

E3 
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/ 

Fig. 2. (a) Dynkin diagrams describing the Witt sublattices for the A and E series of 
maximally symmetric quantum Halt |attices. (b) Values of crH for the principal (i.e., Lmax = 3) 
A and E series of maximally symmetric quantum Hall lattices. 

where C is the Cartan matrix, i.e., the Gram matrix of {el ..... eN_ 1 }, and 

to= [1] for A .... i , m = 2 , 3  . . . . .  Ev, E6, E5 

to= [2] for E4 

to= [1] [1]  for E3 

By formulas (6.31) and (6.32), and using Eqs. (6.15)-(6.20), we have that 

m 
zl=detK=2pm+l, ~rn-2pm+l, for A,,_t ,  m = 2 , 3  .... (7.3) 

m A=detK=2pm-l, a n = 2 p m - l '  for E8-(,,-1~, m = 2 , 3 , 4 , 5 , 6  (7.4) 
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These functions also appear as Hall conductivities of "hierarchy states"; 
see, e.g., refs. 38, 50, 8 and, for the A series refs. 19 and 20. For p = 1, i.e., for 
Lmax = 2p + 1 = 3 [see Eq. (6.33)], we get the fractions shown in Fig. 2b. 

Besides being singled out by their high symmetry, the QH lattices of 
the E series and those of the A series up to dimension 7 can be shown to 
be the unique, smallest dimensional, minimal indecomposable lattices for the 
corresponding fraction. This can be inferred from Table II. For the A series 
the strength of our results is limited by the available tables of lattices given 
in ref. 23. 

Figure 2b shows very clearly the asymmetry between the two series: 
The E series is finite, describing five nontrivial lattices of decreasing dimen- 
sion; the A series is infinite, with increasing dimension. The fraction that 
immediately follows the smallest fraction of the E series is 7/13, experimen- 
tally observed, to which one can associate a unique three-dimensional, 
indecomposable, minimal QH lattice [see Table II, 3(7/13)]. It is not a 
maximally symmetric lattice, however, since the d9 part in the Kneser shape 
is two-dimensional. But it is interesting to note that its Witt part is an 
SU(2) sublattice. 

We stress that, for the next smaller fractions 8/15, 9/17, and 10/19, no 
indecomposble minimal solutions are available (see Section 7.2). If feasible, 
this would be a fruitful range for an experimental search of composite fluids. 
Typical solutions could be 8/15= (1/3)+(1/5),  or 8/15 = (4 /1 5 )+  (4/15). 
(Note that 4/15 is an observed fraction.) These two composite fluids could 
be distinguished by their elementary fractional charges, e * = e / 3  and 
e* = e/5, for the first composite fluid, while e * =  (1/).)(e/15), for the second 
fluid. 

7.5. Examples: The Plateaux at  oH=8/5, 5/3, 1, 1 /2  

If the external magnetic field B t~ acting on a QH sample is not very 
large, and the effective g-factor of the electrons in the two-dimensional fluid 
is small, then if the fluid is incompressible, it can be in a "spin-singlet 
state." In this case, there will be chiral edge spin currents generating an- 
s"~(2)~ Kac-Moody algebra. 

Suppose now that the component of B ~~ in the plane of the sample is 
increased (tilting of Bt~ while the filling factor v is kept constant. Then 
one must expect, that, at a critical value of the tilting angle, a transition 
from the spin-singlet state to a state of the system where the spins of all 
electrons are polarized will occur. 

s For a review see ref. 33. 
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We shall argue that the QH fluid corresponding to the plateau at 
a n = 8/5 is an example of a QH fluid exhibiting such a transition. 

Consulting the table in Section 7.2, we observe that there is no 
indecomposable, minimal QH lattice corresponding to a n = 8 / 5 .  We are 
therefore forced to look for QH lattices which are either decomposable or 
nonminimal. Decomposable QH lattices describe composite QH fluids. For 
small values of the in-plane component of B ~~ the following particle-hole 
composite QH fluid is a natural candidate for an incompressible state with 
an = 8/5. 

(a) One pair of QH lattices corresponding to a l l=8 /5  is 
(F~, Q,.)@(Fh, Qh), with 

F,.=Iz, Q,.= (1, 1) 

F h A 1 101 [1, l = 7], Q,, = 2~ 

corresponding to a Gram matrix Kh = (~ ~,), with Qh= (1, 0), in a normal 
basis. Clearly (Fh, Qh) is the electron-hole conjugate of the QH fluid with 
aH =  2/5 discussed in Section 7.4. In a normal basis, the Gram matrix of F e 
is given by K,.= (l~ ~), with Q,.=(1,0) .  The Witt sublattices of Fe and F h 
are the root lattice of AI, so~ as explained in Section 6, (6.28), there is an 
~u(2)~ Kac-Moody algebra of chiral edge currents which may be inter- 
preted as spin currents. This explanation of a n = 8/5 thus corresponds to a 
"spin-singlet" state, ~8~ which we expect to be realized at small values of BII ~ 

As we increase BC~l ~ keeping the filling factor constant, the Zeeman 
energy of electrons increases. We thus expect that, at some value of BII ~ 
the QH fluid described above becomes unstable and a transition to a new 
incompressible state occurs as B~ti ~ is increased furtherJ g ~'~ This new state 
is likely to contain a fully polarized, completely occupied lowest Landau 
level. The following is a plausible lattice. 

(b) A pair of QH lattices associated to ~ n = 8 / 5 = 1 + 3 / 5  is 
1 1 Iro, with F ~ = I , - I ~ ,  Q~=(1) ,  and (F2~,Q2e)is the 

E6 solution corresponding to a l l =  3/5 which we have discussed in Sec- 
tion 7.4. Obviously, the QH fluid corresponding to this particular decom- 
posable QH lattice is partially spin-polarized. 

Note that the QH fluid described in (a) exhibits edge currents of both 
chiralities, while the edge currents of the one described in (b) have all 
the same chirality. Experiments testing the chirality of edge currents are 
reported in ref. 51. 

It illustrates an aspect of our general analysis that if we give up the 
condition of minimality we can find further QH lattices with a n =  8/5, 
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in particular there are &decomposable, nonminimal QH lattices corre- 
sponding to all=8~5. An example of such a lattice is (F,,,Q~) with 
F,,=ATAj401[3, 1, 1/8], Qe=8~ ,  and symbol 9(8/5)i; see Table l I .  It is 
tempting to interpret the gU(2)corresponding to the A~ sublattice of F,, as 
describing electron spin, while the SU(8) corresponding to A 7 describes 
asymptotic (approximate) internal symmetries. Thus an elementary, incom- 
pressible QH fluid described by (F~, Q~) would have a "spin-singlet" 
ground state. Because of the large internal symmetry it is perhaps unlikely 
that such a fluid can be realized in a monolayer. 

In contrast to the plateau at an = 8/5 which exhibits a transition, as 
the external magnetic field B ~~ is tilted (keeping the filling factor constant), 
no such transition has been observed for the plateau at all= 5/3. It is 
natural to ask whether our analysis permits us to understand this. 

As emphasized in Section 7.2, no indecomposable minimal QH lattice 
exists for all=5~3 in dimension below 17, and, moreover, no minimal, 
maximally symmetric QH lattice can be constructed in any dimension! 
Apparently, the most natural explanations for a N = 5/3 will thus be found 
among composite fluids. (Nonminimal indecomposable QH lattices with 
a N =  5/3 have high dimensions and a fairly wierd structure.)Indeed,  a 
widely accepted picture of the a N =  5/3 state is to view it as an electron- 
hole conjugate form of the state at aN = 1/3, i.e., to interpret it as a com- 
posite fluid 5/3 = 2 - 1 / 3 .  In QH lattice language, this corresponds to a 
decomposition: 

(F, Q)=(F,,, Qe)@(F,,, Qh) (7.5) 

with a e = (Qe, Q,.) = 2 and ah = (Qh, Qh) = 1/3. 
The electron part (Fe, Q,,) has integral Hall conductance a,, = 2; a very 

natural choice is therefore a composite of two elementary fluids with 
O'H= 1: 

(Fe, Qe); /'e= 1,09 1,, Q,,=(1, 1); o ' e = l + l  

Our classification results strongly restrict the QH lattices that can be 
associated to the hole fluid with a~, = 1/3. There is a unique minimal QH 
lattice, and all nonminimal solutions have necessarly a nontrivial value for 
the charge parameter 2. 

This is the content of the following simple lemma. 

L e m m a  11. Let ( F , Q )  be an indecomposable QH lattice with 
(Q, Q ) = a l l =  1/dn, dH= 1, 3, 5 ..... Then: 

1. There is a unique minimal QH lattice (F=(dH), Q=(1 ) ) .  
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2. If dim F~>2, then the charge parameter ). is at least 2 (hence 
t~>2). 

Proof. Recall that g=g.c.d.(Q-K) and ~=Rt~,  in a normal basis; see 
(5.39) and (5.28). Thus g divides ),.-'If g =),, then there is a normal basis in 
which K" has the form 

g =  

0) 
Thus, by a further basis transformation, K can be brought to the form  /10 0) 
and hence F is decomposable, which contradicts our hypothesis. By (5.40) 
it then follows that ). >1 2. QED 

As a consequence, if dim F h > l ,  then we predict that the smallest frac- 
tional electric charge is e* --- e/3)., with 2 >t 2. But experiments reported in 
refs. 6 and 7 suggest that e * =  e/3 for the a l l=  1/3 state. This favors the 
idea that F h is the one-dimensional lattice (3), and Qh=(1) .  Obviously, 
this lattice does not contain an A~ sublattice, and hence it describes a state 
of fully spin-polarized holes. 

The lattice (Fe, Qe) appearing in the decomposition (7.5) describes a 
composite QH fluid with two bands of oppositely spin-polarized electrons. 

These results nicely fit experimental data tS-~ indicating that when the 
external magnetic field B t~ is tilted the incompressible state at an= 5/3 
remains stable, no matter how large Ft (~ is. Our results suggest that the 
an = 5/3 state will exhibit edge currents of both chiralities. This might be 
tested in edge magnetoplasmon experiments. (5~ 

Next, we wish to analyze QH lattices with t rn=  1. According to 
Lemma 11, the only elementary QH fluid without excitations of fractional 
electric charge corresponds to the QH lattice (F, .=(1),  Q~= (1)). It is 
tempting to ask whether there in a natural QH lattic~ with charge 
parameter ;t>~2 corresponding to a l l =  1. The corresponding QH fluid 
would then exhibit fractional electric charges which might arise as a conse- 
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quence of electron-electron interactions. Furthermore, it might happen that 
in such a fluid there is no preferred direction for spin polarization, i.e., one 
would observe spin waves. The corresponding QH lattice would then have 
to contain an A~ root lattice. 

Our general analysis shows that QH lattices corresponding to aH=  1 
with these properties exist. We encounteres two examples in Table II: 

F = D 8 4 ,  [ l ,  �89 a = 2 ~  (7.6) 

with symbol ~-(1)~, and 

F=ETA,4,[I,I,�89 Q=2~  (7.7) 

with symbol ff(1),z_. 
These examples have discriminant ,J = 4 and charge parameter ). = 2. 

They also offer natural possibilities to imbed SU(2)~pi, in their symmetry 
groups. However, their symmetry groups and the dimension of F are 
frighteningly large. 

There are, however, fairly natural two- and three-dimensional QH lat- 
tices with aM = 1. If the invariant Lm,x [whose physical significance is well 
understood; see Eq. (5.17)] is constrained to take the value 3, then we find 
the following lattices: 

The unique two-dimensional QH lattice is 

F =  (3 t3) 2, Q = ~ - ~ z  (7.8) 

corresponding to the symbol 2(1)4- 
Note that the lattice F =  (3 ~ 3)2 is also encountered in the analysis of 

aty = 1/2, but in combination with a Q-,/ector Q = ~. ~ + ~2. 
Clearly, the QH lattice displayed-ln (7.8) d~scr]bes a QH fluid of spin- 

polarized electrons, since F does not contain an A I sublattice. However, in 
three dimensions, we find a QH lattice containing an A~ sublattice: 

F=A~ (4t)(6t) [1, �89 �89 
(7.9) 

Q=2~1 

with symbol 3(1 )62. 
A second three-dimensional QH lattice (F, Q) with symbol 3(1)8_, is 

described by its K-matrix 

K =  1 3 , Q=(1 ,  1, 1) (7.10) 

- 1  1 
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in a symmetric basis. These two QH lattices can be shown to exhaust the 
list of QH lattices with Lmax = 3, cr H = 1 in three dimensionsJ 421 

We notice that only the QH lattice displayed in (7.9) can account for 
SU(2)spi, in an elementary QH fluid of unpolarized electrons, has Lma x = 3, 
and has small dimension. It predicts the existence of excitations with half- 
integer electric charge, just as in the case of the lattices described in (7.6) 
and (7.7). However, it has a rather large discriminant ,I = 12, while the lat- 
tices in (7.6) and (7.7) have a A=4.  This may cast some doubt on the 
stability of a QH fluid described by (7.9). 

In conclusion, one might argue that the QH lattices given in (7.7) and 
in (7.9) are rather natural candidates for the description of an unpolarized, 
elementary QH fluid with all= 1 and with an SU(2)spi, symmetry. 

Finally we note that the lattices in (7.7) and (7.9) could also describe 
spin-polarized, elementary QH fluids in double-layer systems, with the 
SU(2) symmetry acting on the layer index. 

Next, we study QH lattices describing elementary QH fluids with 
a l l =  1/2, a plateau that is observed in double-layer systems. Besides the 
"boring" solution, 

F = ( 3  I 3)2, Q = ~ t + ~ 2  (7.11) 

there are "more imaginative" solutions that are listed as the second, third, 
and fourth lattices in Table III. Among these three, the most natural one 
is 

F=A~ A, 8~ [1, 1, �89 a = 2 ~  (7.12) 

It describes a QH fluid composed of two species of spin-unpolarized elec- 
trons (corresponding to the two layers) exhibiting an SU(2)spi, x SU(2)laycr 
symmetry. Electrons transform according to the spin-l/2 representations of 
both SU(2) symmetries. There are excitations of fractional electric charge 
e/4, spin 1/2, and "isospin" 0, or spin 0 and isospin 1/2. Three excitations 
of one kind and one of the other kind reconstitute an electron. 

A look at Table III suggests that, in certain double-layer systems, one 
should be able to realize an elementary QH fluid with aH= 3/2 (second but 
last lattice in Table III}, although such fluids would exhibit large internal 
symmetries. 

Should we expect to find QH fluids with a n =  1/4 or 1/6? What one 
can show is that, for a two- or three-dimensional QH lattice with a n = 1/4, 
Lm ax~5 ,  and this is also true for maximally symmetric QH lattices. 
Moreover, since g, 2>1 2, the discriminant LJ of all QH lattices with 
trH= 1/4 is always >~16, while QH lattices expected to correspond to 
experimentally observed plateau values have discriminants A ~< 15. For 
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t r n =  1/6, the cor responding  bounds  are Lma x i> 7 and A >/24. These large 
values of Lma, and  d hint at an explana t ion  of why pla teaux at a n  = 1/4, 
1/6 are not  observed:  Tentat ive  Q H  fluids with a n  = 1/4, 1/6 would 
presumably  have a very small  gap and /o r  be threatened by the Wigner  
crystal instabili ty.  

In a separate  paper  t42~ we analyze fairly systematical ly Q H  lattices 
cor responding  to many  observed pla teaux of a n  and make predict ions  
concerning those pla teaux that  exhibit  t ransi t ions between different incom- 
pressible Q H  fluids when external  parameters  such as the density or  the 
in-plane magnet ic  field are varied. Consider ing an example  such as 
a H =  2/3 somewhat  systematical ly  shows that  this is a ra ther  compl ica ted  
task, because when there are many  Q H  lattices cor responding  to the same 
value of a n  one must  appeal  to physical  principles to find out  which 
lattices have a chance to describe exper imental ly  realizable Q H  fluids. 
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